Laplace transform on the recursive moments of aggregate discounted claims with Weibull interwaiting time
We consider aggregate discounted claims of a risk portfolio with Weibull counting process and compute its recursive moments numerically via the Laplace transform. We define the dependence structure between the inter-claim arrival time and its subsequent claims size using the Farlie-Gumbel-Morgenster...
Gespeichert in:
Hauptverfasser: | , , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 1 |
container_start_page | |
container_title | |
container_volume | 2184 |
creator | Ramli, Siti Norafidah Mohd Rozali, Nur Atikah Mohamed Alhabshi, Sharifah Farah Syed Yusoff Hashim, Ishak |
description | We consider aggregate discounted claims of a risk portfolio with Weibull counting process and compute its recursive moments numerically via the Laplace transform. We define the dependence structure between the inter-claim arrival time and its subsequent claims size using the Farlie-Gumbel-Morgenstern (FGM) copula. In our numerical examples, we compare the moments and conduct sensitivity analysis assuming an exponential and a Pareto claims size distribution. We found that despite having similar marginal variances, the risk portfolio with Pareto claims size produces larger moments compared to the corresponding exponential claims size. |
doi_str_mv | 10.1063/1.5136405 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_scitation_primary_10_1063_1_5136405</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2321960459</sourcerecordid><originalsourceid>FETCH-LOGICAL-c258t-50f699cf1dbee716fba1e11629d56424b2b08d23e9363d2fe8f03dd0702419bc3</originalsourceid><addsrcrecordid>eNotkM1KAzEYRYMoWKsL3yDgTpiaL5lkmqUU_6DgRtHdkEm-TFPmpyYZxbe30q7u4h7uhUPINbAFMCXuYCFBqJLJEzIDKaGoFKhTMmNMlwUvxec5uUhpyxjXVbWckc3a7DpjkeZohuTH2NNxoHmDNKKdYgrfSPuxxyEnOnpq2jZiazJSF5IdpyGjo7YzoU_0J-QN_cDQTF1Hw76JPybkMLQ0hx4vyZk3XcKrY87J--PD2-q5WL8-vazu14XlcpkLybzS2npwDWIFyjcGEEBx7aQqednwhi0dF6iFEo57XHomnGMV4yXoxoo5uTns7uL4NWHK9Xac4rC_rLngoBUrpd5Ttwcq2ZBNDuNQ72LoTfytgdX_JmuojybFH91WZuI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype><pqid>2321960459</pqid></control><display><type>conference_proceeding</type><title>Laplace transform on the recursive moments of aggregate discounted claims with Weibull interwaiting time</title><source>AIP Journals Complete</source><creator>Ramli, Siti Norafidah Mohd ; Rozali, Nur Atikah Mohamed ; Alhabshi, Sharifah Farah Syed Yusoff ; Hashim, Ishak</creator><contributor>Ismail, Mohd Tahir ; Rahman, Rosmanjawati Abdul ; Yatim, Yazariah Mohd ; Sulaiman, Hajar ; Abdullah, Farah Aini ; Ahmad, Syakila ; Ali, Majid Khan Majahar ; Ramli, Norshafira ; Ahmad, Noor Atinah</contributor><creatorcontrib>Ramli, Siti Norafidah Mohd ; Rozali, Nur Atikah Mohamed ; Alhabshi, Sharifah Farah Syed Yusoff ; Hashim, Ishak ; Ismail, Mohd Tahir ; Rahman, Rosmanjawati Abdul ; Yatim, Yazariah Mohd ; Sulaiman, Hajar ; Abdullah, Farah Aini ; Ahmad, Syakila ; Ali, Majid Khan Majahar ; Ramli, Norshafira ; Ahmad, Noor Atinah</creatorcontrib><description>We consider aggregate discounted claims of a risk portfolio with Weibull counting process and compute its recursive moments numerically via the Laplace transform. We define the dependence structure between the inter-claim arrival time and its subsequent claims size using the Farlie-Gumbel-Morgenstern (FGM) copula. In our numerical examples, we compare the moments and conduct sensitivity analysis assuming an exponential and a Pareto claims size distribution. We found that despite having similar marginal variances, the risk portfolio with Pareto claims size produces larger moments compared to the corresponding exponential claims size.</description><identifier>ISSN: 0094-243X</identifier><identifier>EISSN: 1551-7616</identifier><identifier>DOI: 10.1063/1.5136405</identifier><identifier>CODEN: APCPCS</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Dependence ; Laplace transforms ; Recursive functions ; Sensitivity analysis ; Size distribution</subject><ispartof>AIP Conference Proceedings, 2019, Vol.2184 (1)</ispartof><rights>Author(s)</rights><rights>2019 Author(s). Published by AIP Publishing.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c258t-50f699cf1dbee716fba1e11629d56424b2b08d23e9363d2fe8f03dd0702419bc3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/acp/article-lookup/doi/10.1063/1.5136405$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>309,310,314,780,784,789,790,794,4512,23930,23931,25140,27924,27925,76384</link.rule.ids></links><search><contributor>Ismail, Mohd Tahir</contributor><contributor>Rahman, Rosmanjawati Abdul</contributor><contributor>Yatim, Yazariah Mohd</contributor><contributor>Sulaiman, Hajar</contributor><contributor>Abdullah, Farah Aini</contributor><contributor>Ahmad, Syakila</contributor><contributor>Ali, Majid Khan Majahar</contributor><contributor>Ramli, Norshafira</contributor><contributor>Ahmad, Noor Atinah</contributor><creatorcontrib>Ramli, Siti Norafidah Mohd</creatorcontrib><creatorcontrib>Rozali, Nur Atikah Mohamed</creatorcontrib><creatorcontrib>Alhabshi, Sharifah Farah Syed Yusoff</creatorcontrib><creatorcontrib>Hashim, Ishak</creatorcontrib><title>Laplace transform on the recursive moments of aggregate discounted claims with Weibull interwaiting time</title><title>AIP Conference Proceedings</title><description>We consider aggregate discounted claims of a risk portfolio with Weibull counting process and compute its recursive moments numerically via the Laplace transform. We define the dependence structure between the inter-claim arrival time and its subsequent claims size using the Farlie-Gumbel-Morgenstern (FGM) copula. In our numerical examples, we compare the moments and conduct sensitivity analysis assuming an exponential and a Pareto claims size distribution. We found that despite having similar marginal variances, the risk portfolio with Pareto claims size produces larger moments compared to the corresponding exponential claims size.</description><subject>Dependence</subject><subject>Laplace transforms</subject><subject>Recursive functions</subject><subject>Sensitivity analysis</subject><subject>Size distribution</subject><issn>0094-243X</issn><issn>1551-7616</issn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2019</creationdate><recordtype>conference_proceeding</recordtype><recordid>eNotkM1KAzEYRYMoWKsL3yDgTpiaL5lkmqUU_6DgRtHdkEm-TFPmpyYZxbe30q7u4h7uhUPINbAFMCXuYCFBqJLJEzIDKaGoFKhTMmNMlwUvxec5uUhpyxjXVbWckc3a7DpjkeZohuTH2NNxoHmDNKKdYgrfSPuxxyEnOnpq2jZiazJSF5IdpyGjo7YzoU_0J-QN_cDQTF1Hw76JPybkMLQ0hx4vyZk3XcKrY87J--PD2-q5WL8-vazu14XlcpkLybzS2npwDWIFyjcGEEBx7aQqednwhi0dF6iFEo57XHomnGMV4yXoxoo5uTns7uL4NWHK9Xac4rC_rLngoBUrpd5Ttwcq2ZBNDuNQ72LoTfytgdX_JmuojybFH91WZuI</recordid><startdate>20191204</startdate><enddate>20191204</enddate><creator>Ramli, Siti Norafidah Mohd</creator><creator>Rozali, Nur Atikah Mohamed</creator><creator>Alhabshi, Sharifah Farah Syed Yusoff</creator><creator>Hashim, Ishak</creator><general>American Institute of Physics</general><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20191204</creationdate><title>Laplace transform on the recursive moments of aggregate discounted claims with Weibull interwaiting time</title><author>Ramli, Siti Norafidah Mohd ; Rozali, Nur Atikah Mohamed ; Alhabshi, Sharifah Farah Syed Yusoff ; Hashim, Ishak</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c258t-50f699cf1dbee716fba1e11629d56424b2b08d23e9363d2fe8f03dd0702419bc3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Dependence</topic><topic>Laplace transforms</topic><topic>Recursive functions</topic><topic>Sensitivity analysis</topic><topic>Size distribution</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ramli, Siti Norafidah Mohd</creatorcontrib><creatorcontrib>Rozali, Nur Atikah Mohamed</creatorcontrib><creatorcontrib>Alhabshi, Sharifah Farah Syed Yusoff</creatorcontrib><creatorcontrib>Hashim, Ishak</creatorcontrib><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ramli, Siti Norafidah Mohd</au><au>Rozali, Nur Atikah Mohamed</au><au>Alhabshi, Sharifah Farah Syed Yusoff</au><au>Hashim, Ishak</au><au>Ismail, Mohd Tahir</au><au>Rahman, Rosmanjawati Abdul</au><au>Yatim, Yazariah Mohd</au><au>Sulaiman, Hajar</au><au>Abdullah, Farah Aini</au><au>Ahmad, Syakila</au><au>Ali, Majid Khan Majahar</au><au>Ramli, Norshafira</au><au>Ahmad, Noor Atinah</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Laplace transform on the recursive moments of aggregate discounted claims with Weibull interwaiting time</atitle><btitle>AIP Conference Proceedings</btitle><date>2019-12-04</date><risdate>2019</risdate><volume>2184</volume><issue>1</issue><issn>0094-243X</issn><eissn>1551-7616</eissn><coden>APCPCS</coden><abstract>We consider aggregate discounted claims of a risk portfolio with Weibull counting process and compute its recursive moments numerically via the Laplace transform. We define the dependence structure between the inter-claim arrival time and its subsequent claims size using the Farlie-Gumbel-Morgenstern (FGM) copula. In our numerical examples, we compare the moments and conduct sensitivity analysis assuming an exponential and a Pareto claims size distribution. We found that despite having similar marginal variances, the risk portfolio with Pareto claims size produces larger moments compared to the corresponding exponential claims size.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/1.5136405</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0094-243X |
ispartof | AIP Conference Proceedings, 2019, Vol.2184 (1) |
issn | 0094-243X 1551-7616 |
language | eng |
recordid | cdi_scitation_primary_10_1063_1_5136405 |
source | AIP Journals Complete |
subjects | Dependence Laplace transforms Recursive functions Sensitivity analysis Size distribution |
title | Laplace transform on the recursive moments of aggregate discounted claims with Weibull interwaiting time |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T07%3A48%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Laplace%20transform%20on%20the%20recursive%20moments%20of%20aggregate%20discounted%20claims%20with%20Weibull%20interwaiting%20time&rft.btitle=AIP%20Conference%20Proceedings&rft.au=Ramli,%20Siti%20Norafidah%20Mohd&rft.date=2019-12-04&rft.volume=2184&rft.issue=1&rft.issn=0094-243X&rft.eissn=1551-7616&rft.coden=APCPCS&rft_id=info:doi/10.1063/1.5136405&rft_dat=%3Cproquest_scita%3E2321960459%3C/proquest_scita%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2321960459&rft_id=info:pmid/&rfr_iscdi=true |