Laplace transform on the recursive moments of aggregate discounted claims with Weibull interwaiting time

We consider aggregate discounted claims of a risk portfolio with Weibull counting process and compute its recursive moments numerically via the Laplace transform. We define the dependence structure between the inter-claim arrival time and its subsequent claims size using the Farlie-Gumbel-Morgenster...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Ramli, Siti Norafidah Mohd, Rozali, Nur Atikah Mohamed, Alhabshi, Sharifah Farah Syed Yusoff, Hashim, Ishak
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 1
container_start_page
container_title
container_volume 2184
creator Ramli, Siti Norafidah Mohd
Rozali, Nur Atikah Mohamed
Alhabshi, Sharifah Farah Syed Yusoff
Hashim, Ishak
description We consider aggregate discounted claims of a risk portfolio with Weibull counting process and compute its recursive moments numerically via the Laplace transform. We define the dependence structure between the inter-claim arrival time and its subsequent claims size using the Farlie-Gumbel-Morgenstern (FGM) copula. In our numerical examples, we compare the moments and conduct sensitivity analysis assuming an exponential and a Pareto claims size distribution. We found that despite having similar marginal variances, the risk portfolio with Pareto claims size produces larger moments compared to the corresponding exponential claims size.
doi_str_mv 10.1063/1.5136405
format Conference Proceeding
fullrecord <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_scitation_primary_10_1063_1_5136405</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2321960459</sourcerecordid><originalsourceid>FETCH-LOGICAL-c258t-50f699cf1dbee716fba1e11629d56424b2b08d23e9363d2fe8f03dd0702419bc3</originalsourceid><addsrcrecordid>eNotkM1KAzEYRYMoWKsL3yDgTpiaL5lkmqUU_6DgRtHdkEm-TFPmpyYZxbe30q7u4h7uhUPINbAFMCXuYCFBqJLJEzIDKaGoFKhTMmNMlwUvxec5uUhpyxjXVbWckc3a7DpjkeZohuTH2NNxoHmDNKKdYgrfSPuxxyEnOnpq2jZiazJSF5IdpyGjo7YzoU_0J-QN_cDQTF1Hw76JPybkMLQ0hx4vyZk3XcKrY87J--PD2-q5WL8-vazu14XlcpkLybzS2npwDWIFyjcGEEBx7aQqednwhi0dF6iFEo57XHomnGMV4yXoxoo5uTns7uL4NWHK9Xac4rC_rLngoBUrpd5Ttwcq2ZBNDuNQ72LoTfytgdX_JmuojybFH91WZuI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype><pqid>2321960459</pqid></control><display><type>conference_proceeding</type><title>Laplace transform on the recursive moments of aggregate discounted claims with Weibull interwaiting time</title><source>AIP Journals Complete</source><creator>Ramli, Siti Norafidah Mohd ; Rozali, Nur Atikah Mohamed ; Alhabshi, Sharifah Farah Syed Yusoff ; Hashim, Ishak</creator><contributor>Ismail, Mohd Tahir ; Rahman, Rosmanjawati Abdul ; Yatim, Yazariah Mohd ; Sulaiman, Hajar ; Abdullah, Farah Aini ; Ahmad, Syakila ; Ali, Majid Khan Majahar ; Ramli, Norshafira ; Ahmad, Noor Atinah</contributor><creatorcontrib>Ramli, Siti Norafidah Mohd ; Rozali, Nur Atikah Mohamed ; Alhabshi, Sharifah Farah Syed Yusoff ; Hashim, Ishak ; Ismail, Mohd Tahir ; Rahman, Rosmanjawati Abdul ; Yatim, Yazariah Mohd ; Sulaiman, Hajar ; Abdullah, Farah Aini ; Ahmad, Syakila ; Ali, Majid Khan Majahar ; Ramli, Norshafira ; Ahmad, Noor Atinah</creatorcontrib><description>We consider aggregate discounted claims of a risk portfolio with Weibull counting process and compute its recursive moments numerically via the Laplace transform. We define the dependence structure between the inter-claim arrival time and its subsequent claims size using the Farlie-Gumbel-Morgenstern (FGM) copula. In our numerical examples, we compare the moments and conduct sensitivity analysis assuming an exponential and a Pareto claims size distribution. We found that despite having similar marginal variances, the risk portfolio with Pareto claims size produces larger moments compared to the corresponding exponential claims size.</description><identifier>ISSN: 0094-243X</identifier><identifier>EISSN: 1551-7616</identifier><identifier>DOI: 10.1063/1.5136405</identifier><identifier>CODEN: APCPCS</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Dependence ; Laplace transforms ; Recursive functions ; Sensitivity analysis ; Size distribution</subject><ispartof>AIP Conference Proceedings, 2019, Vol.2184 (1)</ispartof><rights>Author(s)</rights><rights>2019 Author(s). Published by AIP Publishing.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c258t-50f699cf1dbee716fba1e11629d56424b2b08d23e9363d2fe8f03dd0702419bc3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/acp/article-lookup/doi/10.1063/1.5136405$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>309,310,314,780,784,789,790,794,4512,23930,23931,25140,27924,27925,76384</link.rule.ids></links><search><contributor>Ismail, Mohd Tahir</contributor><contributor>Rahman, Rosmanjawati Abdul</contributor><contributor>Yatim, Yazariah Mohd</contributor><contributor>Sulaiman, Hajar</contributor><contributor>Abdullah, Farah Aini</contributor><contributor>Ahmad, Syakila</contributor><contributor>Ali, Majid Khan Majahar</contributor><contributor>Ramli, Norshafira</contributor><contributor>Ahmad, Noor Atinah</contributor><creatorcontrib>Ramli, Siti Norafidah Mohd</creatorcontrib><creatorcontrib>Rozali, Nur Atikah Mohamed</creatorcontrib><creatorcontrib>Alhabshi, Sharifah Farah Syed Yusoff</creatorcontrib><creatorcontrib>Hashim, Ishak</creatorcontrib><title>Laplace transform on the recursive moments of aggregate discounted claims with Weibull interwaiting time</title><title>AIP Conference Proceedings</title><description>We consider aggregate discounted claims of a risk portfolio with Weibull counting process and compute its recursive moments numerically via the Laplace transform. We define the dependence structure between the inter-claim arrival time and its subsequent claims size using the Farlie-Gumbel-Morgenstern (FGM) copula. In our numerical examples, we compare the moments and conduct sensitivity analysis assuming an exponential and a Pareto claims size distribution. We found that despite having similar marginal variances, the risk portfolio with Pareto claims size produces larger moments compared to the corresponding exponential claims size.</description><subject>Dependence</subject><subject>Laplace transforms</subject><subject>Recursive functions</subject><subject>Sensitivity analysis</subject><subject>Size distribution</subject><issn>0094-243X</issn><issn>1551-7616</issn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2019</creationdate><recordtype>conference_proceeding</recordtype><recordid>eNotkM1KAzEYRYMoWKsL3yDgTpiaL5lkmqUU_6DgRtHdkEm-TFPmpyYZxbe30q7u4h7uhUPINbAFMCXuYCFBqJLJEzIDKaGoFKhTMmNMlwUvxec5uUhpyxjXVbWckc3a7DpjkeZohuTH2NNxoHmDNKKdYgrfSPuxxyEnOnpq2jZiazJSF5IdpyGjo7YzoU_0J-QN_cDQTF1Hw76JPybkMLQ0hx4vyZk3XcKrY87J--PD2-q5WL8-vazu14XlcpkLybzS2npwDWIFyjcGEEBx7aQqednwhi0dF6iFEo57XHomnGMV4yXoxoo5uTns7uL4NWHK9Xac4rC_rLngoBUrpd5Ttwcq2ZBNDuNQ72LoTfytgdX_JmuojybFH91WZuI</recordid><startdate>20191204</startdate><enddate>20191204</enddate><creator>Ramli, Siti Norafidah Mohd</creator><creator>Rozali, Nur Atikah Mohamed</creator><creator>Alhabshi, Sharifah Farah Syed Yusoff</creator><creator>Hashim, Ishak</creator><general>American Institute of Physics</general><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20191204</creationdate><title>Laplace transform on the recursive moments of aggregate discounted claims with Weibull interwaiting time</title><author>Ramli, Siti Norafidah Mohd ; Rozali, Nur Atikah Mohamed ; Alhabshi, Sharifah Farah Syed Yusoff ; Hashim, Ishak</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c258t-50f699cf1dbee716fba1e11629d56424b2b08d23e9363d2fe8f03dd0702419bc3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Dependence</topic><topic>Laplace transforms</topic><topic>Recursive functions</topic><topic>Sensitivity analysis</topic><topic>Size distribution</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ramli, Siti Norafidah Mohd</creatorcontrib><creatorcontrib>Rozali, Nur Atikah Mohamed</creatorcontrib><creatorcontrib>Alhabshi, Sharifah Farah Syed Yusoff</creatorcontrib><creatorcontrib>Hashim, Ishak</creatorcontrib><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ramli, Siti Norafidah Mohd</au><au>Rozali, Nur Atikah Mohamed</au><au>Alhabshi, Sharifah Farah Syed Yusoff</au><au>Hashim, Ishak</au><au>Ismail, Mohd Tahir</au><au>Rahman, Rosmanjawati Abdul</au><au>Yatim, Yazariah Mohd</au><au>Sulaiman, Hajar</au><au>Abdullah, Farah Aini</au><au>Ahmad, Syakila</au><au>Ali, Majid Khan Majahar</au><au>Ramli, Norshafira</au><au>Ahmad, Noor Atinah</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Laplace transform on the recursive moments of aggregate discounted claims with Weibull interwaiting time</atitle><btitle>AIP Conference Proceedings</btitle><date>2019-12-04</date><risdate>2019</risdate><volume>2184</volume><issue>1</issue><issn>0094-243X</issn><eissn>1551-7616</eissn><coden>APCPCS</coden><abstract>We consider aggregate discounted claims of a risk portfolio with Weibull counting process and compute its recursive moments numerically via the Laplace transform. We define the dependence structure between the inter-claim arrival time and its subsequent claims size using the Farlie-Gumbel-Morgenstern (FGM) copula. In our numerical examples, we compare the moments and conduct sensitivity analysis assuming an exponential and a Pareto claims size distribution. We found that despite having similar marginal variances, the risk portfolio with Pareto claims size produces larger moments compared to the corresponding exponential claims size.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/1.5136405</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0094-243X
ispartof AIP Conference Proceedings, 2019, Vol.2184 (1)
issn 0094-243X
1551-7616
language eng
recordid cdi_scitation_primary_10_1063_1_5136405
source AIP Journals Complete
subjects Dependence
Laplace transforms
Recursive functions
Sensitivity analysis
Size distribution
title Laplace transform on the recursive moments of aggregate discounted claims with Weibull interwaiting time
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T07%3A48%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Laplace%20transform%20on%20the%20recursive%20moments%20of%20aggregate%20discounted%20claims%20with%20Weibull%20interwaiting%20time&rft.btitle=AIP%20Conference%20Proceedings&rft.au=Ramli,%20Siti%20Norafidah%20Mohd&rft.date=2019-12-04&rft.volume=2184&rft.issue=1&rft.issn=0094-243X&rft.eissn=1551-7616&rft.coden=APCPCS&rft_id=info:doi/10.1063/1.5136405&rft_dat=%3Cproquest_scita%3E2321960459%3C/proquest_scita%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2321960459&rft_id=info:pmid/&rfr_iscdi=true