Laplace transform on the recursive moments of aggregate discounted claims with Weibull interwaiting time
We consider aggregate discounted claims of a risk portfolio with Weibull counting process and compute its recursive moments numerically via the Laplace transform. We define the dependence structure between the inter-claim arrival time and its subsequent claims size using the Farlie-Gumbel-Morgenster...
Gespeichert in:
Hauptverfasser: | , , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We consider aggregate discounted claims of a risk portfolio with Weibull counting process and compute its recursive moments numerically via the Laplace transform. We define the dependence structure between the inter-claim arrival time and its subsequent claims size using the Farlie-Gumbel-Morgenstern (FGM) copula. In our numerical examples, we compare the moments and conduct sensitivity analysis assuming an exponential and a Pareto claims size distribution. We found that despite having similar marginal variances, the risk portfolio with Pareto claims size produces larger moments compared to the corresponding exponential claims size. |
---|---|
ISSN: | 0094-243X 1551-7616 |
DOI: | 10.1063/1.5136405 |