Acoustic and double elastic shock waves in single-crystal graphene
Double elastic shock waves are rarely observed in two-dimensional (2D) materials and normally unexpected for elastically isotropic 2D crystals such as graphene. With large-scale molecular dynamics simulations, we show that in single-crystal graphene shock-loaded along nonzigzag and nonarmchair direc...
Gespeichert in:
Veröffentlicht in: | Journal of applied physics 2020-02, Vol.127 (5), Article 055101 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Double elastic shock waves are rarely observed in two-dimensional (2D) materials and normally unexpected for elastically isotropic 2D crystals such as graphene. With large-scale molecular dynamics simulations, we show that in single-crystal graphene shock-loaded along nonzigzag and nonarmchair directions, double elastic shock waves (quasilongitudinal and quasitransverse) can emerge. Quantitative acoustic wave equation analysis reveals that shock-induced symmetry reduction in lattice, as well as in elastic stiffness tensor, gives rise to the normally unexpected quasitransverse wave following the quasilongitudinal wave. |
---|---|
ISSN: | 0021-8979 1089-7550 |
DOI: | 10.1063/1.5132925 |