Brain-inspired computing with memristors: Challenges in devices, circuits, and systems

This article provides a review of current development and challenges in brain-inspired computing with memristors. We review the mechanisms of various memristive devices that can mimic synaptic and neuronal functionalities and survey the progress of memristive spiking and artificial neural networks....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied Physics Reviews 2020-03, Vol.7 (1)
Hauptverfasser: Zhang, Yang, Wang, Zhongrui, Zhu, Jiadi, Yang, Yuchao, Rao, Mingyi, Song, Wenhao, Zhuo, Ye, Zhang, Xumeng, Cui, Menglin, Shen, Linlin, Huang, Ru, Joshua Yang, J.
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This article provides a review of current development and challenges in brain-inspired computing with memristors. We review the mechanisms of various memristive devices that can mimic synaptic and neuronal functionalities and survey the progress of memristive spiking and artificial neural networks. Different architectures are compared, including spiking neural networks, fully connected artificial neural networks, convolutional neural networks, and Hopfield recurrent neural networks. Challenges and strategies for nanoelectronic brain-inspired computing systems, including device variations, training, and testing algorithms, are also discussed.
ISSN:1931-9401
1931-9401
DOI:10.1063/1.5124027