Off-axis parabolic mirror relay microscope for experiments with ultra-cold matter

A new optical system is introduced for the imaging of Coulomb crystals held in a cryogenic ion trap where there are space limitations preventing the placement of an objective close to the fluorescing ions. The optical system features an off-axis parabolic (OAP) mirror relay microscope that will serv...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Review of scientific instruments 2019-12, Vol.90 (12), p.123701-123701
Hauptverfasser: Hejduk, Michal, Heazlewood, Brianna R.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A new optical system is introduced for the imaging of Coulomb crystals held in a cryogenic ion trap where there are space limitations preventing the placement of an objective close to the fluorescing ions. The optical system features an off-axis parabolic (OAP) mirror relay microscope that will serve to acquire images of a lattice of fluorescing ions confined within an ultra-high-vacuum vessel operating at temperatures below 10 K. We report that the OAP mirror relay setup can resolve features smaller than the separation between neighboring ions in Coulomb crystals. The setup presented here consists of two 90-degree OAP mirrors arranged into a relay from which standard microscope optics deliver the image to a camera. This design allows the first element in the imaging setup—an OAP mirror—to be located as close as possible to the ion trap, achieving high resolution without the need for a direct line-of-sight to the trap center or for a view port to be located in close proximity to the ion trap. Such an arrangement would not be possible with a standard microscope objective, which is the approach commonly adopted by the field. OAP mirrors represent a novel solution for delivering polychromatic images with micrometer-scale resolution over extended distances.
ISSN:0034-6748
1089-7623
DOI:10.1063/1.5123792