Electrochemical etching of AlGaN for the realization of thin-film devices

Heterogeneously integrated AlGaN epitaxial layers will be essential for future optical and electrical devices like thin-film flip-chip ultraviolet (UV) light-emitting diodes, UV vertical-cavity surface-emitting lasers, and high-electron mobility transistors on efficient heat sinks. Such AlGaN-membra...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied physics letters 2019-10, Vol.115 (18), p.182103
Hauptverfasser: Bergmann, Michael A., Enslin, Johannes, Yapparov, Rinat, Hjort, Filip, Wickman, Björn, Marcinkevičius, Saulius, Wernicke, Tim, Kneissl, Michael, Haglund, Åsa
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Heterogeneously integrated AlGaN epitaxial layers will be essential for future optical and electrical devices like thin-film flip-chip ultraviolet (UV) light-emitting diodes, UV vertical-cavity surface-emitting lasers, and high-electron mobility transistors on efficient heat sinks. Such AlGaN-membranes will also enable flexible and micromechanical devices. However, to develop a method to separate the AlGaN-device membranes from the substrate has proven to be challenging, in particular, for high-quality device materials, which require the use of a lattice-matched AlGaN sacrificial layer. We demonstrate an electrochemical etching method by which it is possible to achieve complete lateral etching of an AlGaN sacrificial layer with up to 50% Al-content. The influence of etching voltage and the Al-content of the sacrificial layer on the etching process is investigated. The etched N-polar surface shows the same macroscopic topography as that of the as-grown epitaxial structure, and the root-mean square roughness is 3.5 nm for 1   μ m × 1   μ m scan areas. Separated device layers have a well-defined thickness and smooth etched surfaces. Transferred multi-quantum-well structures were fabricated and investigated by time-resolved photoluminescence measurements. The quantum wells showed no sign of degradation caused by the thin-film process.
ISSN:0003-6951
1077-3118
1077-3118
DOI:10.1063/1.5120397