Design of a metalhydride compressor for a hydrogen technology lab

The article describes the necessity of developing an energy source suitable for domestic applications such as photovoltaic panels. Since photovoltaic panels have the highest efficiency during lunch when at least people are present in the home, a suitable energy carrier is needed to store them in hou...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Bednárová, Ľubica, Brestovič, Tomáš
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The article describes the necessity of developing an energy source suitable for domestic applications such as photovoltaic panels. Since photovoltaic panels have the highest efficiency during lunch when at least people are present in the home, a suitable energy carrier is needed to store them in household. The paper describes a hydrogen technology laboratory equipped with a photovoltaic system connected to hydrogen production by electrolysis of water. Subsequently, this hydrogen is deposited. In order to increase the amount of deposited hydrogen, a heat pump hydrogen compressor was developed to use the waste heat to absorb hydrogen into the metal hydride. This heat is used to increase the pressure in the absorbed hydrogen reservoir to compress it and release it to a higher degree of compression. Hydralloy C0 and TiCrMn0.55Fe0.3V0.15, whose properties and PCT curves show the desired properties for successful hydrogen compression, are considered in the construction of the compressor. By using the Hydralloy C0 - TiCrMn0.55Fe0.3V0.15 combination, it is possible to increase the hydrogen pressure from about 20 bar to about 200 bar in a temperature range of about from 15 to 65°C. Hydrogen compression with metal hydrides in temperature swing operation is a promising component for future hydrogen systems, as they have the capability of compressing hydrogen to high pressures without moving parts and do not require mechanical energy, but only heat.
ISSN:0094-243X
1551-7616
DOI:10.1063/1.5114732