Coherent structures in tornado-like vortices
The dynamics of tornadolike vortices is investigated through a set of novel physical experiments and modal analyses for a wide range of swirl ratios (0.22 ≤ S ≤ 0.96). Various physical phenomena such as wandering, vortex breakdown, or transition from one-cell to two-cell structures are observed. To...
Gespeichert in:
Veröffentlicht in: | Physics of fluids (1994) 2019-08, Vol.31 (8) |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The dynamics of tornadolike vortices is investigated through a set of novel physical experiments and modal analyses for a wide range of swirl ratios (0.22 ≤ S ≤ 0.96). Various physical phenomena such as wandering, vortex breakdown, or transition from one-cell to two-cell structures are observed. To investigate the coherent structure of the tornado vortices, two different decomposition methods are applied: (i) proper orthogonal decomposition (POD), also referred to as principle component analysis, and (ii) a novel dynamic proper orthogonal decomposition to provide time evolutions of the POD modes. To foster the physical interpretation of these POD modes, we also applied modal decomposition on a simulated synthetic vortex. The results show that at low swirl ratios before vortex breakdown, the flow is characterized by a single vortex which is tilted at lower heights. For intermediate swirls, before vortex touchdown, the flow is characterized by a recirculation bubble with a single spiral rotating around it. By further increasing the swirl ratio, transition from a single spiral to a double spiral (one-cell to two-cell structures) occurs. Based on these observations, a simple vortex structure of tornadolike vortex is put forward which can be used to generate a low order, large scale turbulence model for these types of flows. |
---|---|
ISSN: | 1070-6631 1089-7666 |
DOI: | 10.1063/1.5111530 |