An effective semiclassical approach to IR spectroscopy

We present a novel approach to calculate molecular infrared (IR) spectra based on semiclassical (SC) molecular dynamics. The main advance from a previous SC method [M. Micciarelli et al. J. Chem. Phys. 149, 064115 (2018)] consists of the possibility to avoid state-to-state calculations making applic...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of chemical physics 2019-05, Vol.150 (18), p.184113-184113
Hauptverfasser: Micciarelli, Marco, Gabas, Fabio, Conte, Riccardo, Ceotto, Michele
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We present a novel approach to calculate molecular infrared (IR) spectra based on semiclassical (SC) molecular dynamics. The main advance from a previous SC method [M. Micciarelli et al. J. Chem. Phys. 149, 064115 (2018)] consists of the possibility to avoid state-to-state calculations making applications to systems characterized by sizable densities of vibrational states feasible. Furthermore, this new method accounts not only for positions and intensities of the several absorption bands which make up the IR spectrum but also for their shapes. We show that accurate SC IR spectra including quantum effects and anharmonicities for both frequencies and intensities can be obtained starting from SC power spectra. The approach is first tested against the water molecule and then applied to the 10-atom glycine amino acid.
ISSN:0021-9606
1089-7690
DOI:10.1063/1.5096968