Nonlinearity-based circulator

Commercially available nonreciprocal devices, such as isolators and circulators, play a fundamental role in communication systems. Since they commonly rely on magnetic materials, they tend to become bulky, expensive, and difficult to be integrated in conventional microelectronic circuits. Here, we e...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied physics letters 2019-05, Vol.114 (18)
Hauptverfasser: D'Aguanno, Giuseppe, Sounas, Dimitrios L., Saied, Hady M., Alù, Andrea
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Commercially available nonreciprocal devices, such as isolators and circulators, play a fundamental role in communication systems. Since they commonly rely on magnetic materials, they tend to become bulky, expensive, and difficult to be integrated in conventional microelectronic circuits. Here, we explore the functionality of a magnetic-free circulator where reciprocity is broken by suitable geometric asymmetries combined with tailored nonlinearities. We show that it is possible to operate a fully passive coupled resonator system without external bias like a circulator for pulsed signals impinging at its ports within a desired range of intensities. The functionality can be applied to a variety of physical systems, ranging from electronics to photonics and acoustics.
ISSN:0003-6951
1077-3118
DOI:10.1063/1.5094736