Electric field induced manipulation of resistive and magnetization switching in Pt/NiFe1.95Cr0.05O4/Pt memory devices
In this letter, both resistive and magnetization switching were realized in Pt/NiFe1.95Cr0.05O4 (Cr-NFO)/Pt devices by the manipulation applied electric field process, where a Cr-NFO switching layer was prepared by a facile chemical solution process method. The Cr-NFO based devices exhibited stable...
Gespeichert in:
Veröffentlicht in: | Applied physics letters 2019-05, Vol.114 (20) |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this letter, both resistive and magnetization switching were realized in Pt/NiFe1.95Cr0.05O4 (Cr-NFO)/Pt devices by the manipulation applied electric field process, where a Cr-NFO switching layer was prepared by a facile chemical solution process method. The Cr-NFO based devices exhibited stable unipolar switching behavior, uniform operating voltages, good endurance (>103 cycles), large ON/OFF memory window (>102), and excellent retention characteristic time (>105 s at 25 °C). Meanwhile, the saturation magnetization of Cr-NFO based devices showed reversible switching in different resistance states. The significant change between the high magnetization state and the low magnetization state could reach as high as ∼50% during resistive switching operation. The ON-OFF switching can be achieved at room temperature in resistive and magnetization switching. The proposed physical mechanism of resistive and magnetized switching of Cr-NFO based devices was related to the formation and rupture of conduction filaments consisting of oxygen vacancies and cations, which was based on the conversion of Fe (Fe3+ → Fe2+) and Cr (Cr3+ → Cr4+) valence change, redox reaction, and Joule heating effects. The coexistence of resistive and magnetization switching in ferrite thin film based devices has potential application in nonvolatile memory and magneto-electric coupling devices. |
---|---|
ISSN: | 0003-6951 1077-3118 |
DOI: | 10.1063/1.5091841 |