Electric field induced manipulation of resistive and magnetization switching in Pt/NiFe1.95Cr0.05O4/Pt memory devices

In this letter, both resistive and magnetization switching were realized in Pt/NiFe1.95Cr0.05O4 (Cr-NFO)/Pt devices by the manipulation applied electric field process, where a Cr-NFO switching layer was prepared by a facile chemical solution process method. The Cr-NFO based devices exhibited stable...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied physics letters 2019-05, Vol.114 (20)
Hauptverfasser: Hao, Aize, Jia, Dianzeng, Ismail, Muhammad, Huang, Wenhua, Chen, Ruqi, Bao, Dinghua
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this letter, both resistive and magnetization switching were realized in Pt/NiFe1.95Cr0.05O4 (Cr-NFO)/Pt devices by the manipulation applied electric field process, where a Cr-NFO switching layer was prepared by a facile chemical solution process method. The Cr-NFO based devices exhibited stable unipolar switching behavior, uniform operating voltages, good endurance (>103 cycles), large ON/OFF memory window (>102), and excellent retention characteristic time (>105 s at 25 °C). Meanwhile, the saturation magnetization of Cr-NFO based devices showed reversible switching in different resistance states. The significant change between the high magnetization state and the low magnetization state could reach as high as ∼50% during resistive switching operation. The ON-OFF switching can be achieved at room temperature in resistive and magnetization switching. The proposed physical mechanism of resistive and magnetized switching of Cr-NFO based devices was related to the formation and rupture of conduction filaments consisting of oxygen vacancies and cations, which was based on the conversion of Fe (Fe3+ → Fe2+) and Cr (Cr3+ → Cr4+) valence change, redox reaction, and Joule heating effects. The coexistence of resistive and magnetization switching in ferrite thin film based devices has potential application in nonvolatile memory and magneto-electric coupling devices.
ISSN:0003-6951
1077-3118
DOI:10.1063/1.5091841