On an eigenvalue problem for an anisotropic elliptic equation
We study the existence of infinitely many solutions for anisotropic variable exponent problem of the type { −∑i=1N∂xiai(x,∂xiu)+∑i=1Nai(x,u)=λ| u |q(x)−2uinΩ,∂u∂v=0on∂Ω. Where Ω ⊂ RN (N ≥ 3) is a bounded domain with smooth boundary ∂Ω, λ > 0, pi, q are continuous functions on Ω¯ such that pi(x) ≥...
Gespeichert in:
Hauptverfasser: | , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We study the existence of infinitely many solutions for anisotropic variable exponent problem of the type
{ −∑i=1N∂xiai(x,∂xiu)+∑i=1Nai(x,u)=λ| u |q(x)−2uinΩ,∂u∂v=0on∂Ω.
Where Ω ⊂ RN (N ≥ 3) is a bounded domain with smooth boundary ∂Ω, λ > 0, pi, q are continuous functions on Ω¯ such that pi(x) ≥ 2, ∀x ∈ Ω and i ∈ {1, 2, ….., N}.
The main result of this paper establishes the existence of two positive constants λ0 and λ1 with λ0 ≤ λ1 such that every λ ∈ (λ1, ∞) is an eigenvalue, while no λ ∈ (0, λ0) can be an eigenvalue of the above problem. |
---|---|
ISSN: | 0094-243X 1551-7616 |
DOI: | 10.1063/1.5090641 |