Nuclear resonant small-angle scattering for investigation of microstructures in electronic States

The measurement of the nuclear resonant small-angle scattering was achieved by scanning the position of a multi-element avalanche photodiode detector, detecting delayed nuclear resonant signal to investigate microstructures of the electronic states. The nuclear resonant small-angle scattering has be...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Kitao, S., Kurokuzu, M., Kobayashi, Y., Seto, M., Yoda, Y., Kishimoto, S.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The measurement of the nuclear resonant small-angle scattering was achieved by scanning the position of a multi-element avalanche photodiode detector, detecting delayed nuclear resonant signal to investigate microstructures of the electronic states. The nuclear resonant small-angle scattering has been attempted to study the coexisting phase of superconductivity and magnetic order in an under-doped Fe-based superconductor, Ba0.8K0.2Fe2As2. Clear change was not observed in the exponent of the angular profile of the nuclear resonant small-angle scattering in the coexisting temperature. This fact implies the microstructure in the coexisting phase does not have an obvious typical scale but a complex spatial texture. Another attempt was performed for the microstructure in the magnetic properties in an anti-invar fcc Fe-Ni-C alloy to investigate mechanism of the anti-invar properties. An enhancement of the angular profile in a few tens of nm range was observed as decreasing the temperature down to a little below the Curie temperature. This fact implies the existence of the inhomogeneity of magnetically-ordered phase in this range of size, which may related to the anti-invar properties.
ISSN:0094-243X
1551-7616
DOI:10.1063/1.5084631