Nuclear resonant small-angle scattering for investigation of microstructures in electronic States
The measurement of the nuclear resonant small-angle scattering was achieved by scanning the position of a multi-element avalanche photodiode detector, detecting delayed nuclear resonant signal to investigate microstructures of the electronic states. The nuclear resonant small-angle scattering has be...
Gespeichert in:
Hauptverfasser: | , , , , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The measurement of the nuclear resonant small-angle scattering was achieved by scanning the position of a multi-element avalanche photodiode detector, detecting delayed nuclear resonant signal to investigate microstructures of the electronic states. The nuclear resonant small-angle scattering has been attempted to study the coexisting phase of superconductivity and magnetic order in an under-doped Fe-based superconductor, Ba0.8K0.2Fe2As2. Clear change was not observed in the exponent of the angular profile of the nuclear resonant small-angle scattering in the coexisting temperature. This fact implies the microstructure in the coexisting phase does not have an obvious typical scale but a complex spatial texture. Another attempt was performed for the microstructure in the magnetic properties in an anti-invar fcc Fe-Ni-C alloy to investigate mechanism of the anti-invar properties. An enhancement of the angular profile in a few tens of nm range was observed as decreasing the temperature down to a little below the Curie temperature. This fact implies the existence of the inhomogeneity of magnetically-ordered phase in this range of size, which may related to the anti-invar properties. |
---|---|
ISSN: | 0094-243X 1551-7616 |
DOI: | 10.1063/1.5084631 |