Bargmann and Barut-Girardello models for the Racah algebra

The Racah algebra and its higher rank extension are the algebras underlying the univariate and multivariate Racah polynomials. In this paper, we develop two new models in which the Racah algebra naturally arises as symmetry algebra, namely, the Bargmann model and the Barut-Girardello model. We show...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of mathematical physics 2019-01, Vol.60 (1)
Hauptverfasser: De Bie, Hendrik, Iliev, Plamen, Vinet, Luc
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The Racah algebra and its higher rank extension are the algebras underlying the univariate and multivariate Racah polynomials. In this paper, we develop two new models in which the Racah algebra naturally arises as symmetry algebra, namely, the Bargmann model and the Barut-Girardello model. We show how both models are connected with the superintegrable model of Miller et al. The Bargmann model moreover leads to a new realization of the Racah algebra of rank n as n-variable differential operators. Our conceptual approach also allows us to rederive the basis functions of the superintegrable model without resorting to separation of variables.
ISSN:0022-2488
1089-7658
DOI:10.1063/1.5080985