Constant-adiabaticity radiofrequency pulses for generating long-lived singlet spin states in NMR
A method is implemented to perform “fast” adiabatic variation of the spin Hamiltonian by imposing the constant adiabaticity condition. The method is applied to improve the performance of singlet-state Nuclear Magnetic Resonance (NMR) experiments, specifically, for efficient generation and readout of...
Gespeichert in:
Veröffentlicht in: | The Journal of chemical physics 2019-02, Vol.150 (6), p.064201-064201 |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A method is implemented to perform “fast” adiabatic variation of the spin Hamiltonian by imposing the constant adiabaticity condition. The method is applied to improve the performance of singlet-state Nuclear Magnetic Resonance (NMR) experiments, specifically, for efficient generation and readout of the singlet spin order in coupled spin pairs by applying adiabatically ramped RF-fields. Test experiments have been performed on a specially designed molecule having two strongly coupled 13C spins and on selectively isotopically labelled glycerol having two pairs of coupled protons. Optimized RF-ramps show improved performance in comparison, for example, to linear ramps. We expect that the methods described here are useful not only for singlet-state NMR experiments but also for other experiments in magnetic resonance, which utilize adiabatic variation of the spin Hamiltonian. |
---|---|
ISSN: | 0021-9606 1089-7690 |
DOI: | 10.1063/1.5079436 |