Ferromagnetism in the multiferroic alloy systems BiFeO3-BaTiO3 and BiFeO3-SrTiO3: Intrinsic or extrinsic?

Among the different bulk alloys of the room temperature multiferroic compound BiFeO3, alloying with ATiO3 (A = Ba, Sr, Pb) is interesting as they have been reported to induce ferromagnetism under certain conditions. While this makes them interesting as potential multiferroic magnetoelectric material...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied physics letters 2019-01, Vol.114 (2)
Hauptverfasser: Kumar, Amit, Kumar, Avinash, Saha, Sujoy, Basumatary, Himalay, Ranjan, Rajeev
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Among the different bulk alloys of the room temperature multiferroic compound BiFeO3, alloying with ATiO3 (A = Ba, Sr, Pb) is interesting as they have been reported to induce ferromagnetism under certain conditions. While this makes them interesting as potential multiferroic magnetoelectric materials, there is a lack of clarity on the origin of ferromagnetism in these systems. We have performed a detailed magneto-structural analysis on two alloys, namely, BiFeO3-BaTiO3 and BiFeO3-SrTiO3, and found the systems' propensity for the formation of ferrimagnetic hexaferrite (BaFe12O19 and SrFe12O19) phases. Though insignificantly small to the extent of being undetectable by x-ray powder diffraction, we prove that the ferromagnetic character of the specimen is entirely due to spontaneous precipitation of the hexaferrite grains. While our results suggest that care should be exercised before attributing ferromagnetism in such alloy systems as intrinsic to the perovskite phase, the propensity for the spontaneous precipitation of the hexaferrite phase in these multiferroic alloy systems is encouraging as it provides an opportunity for designing self-grown ferroelectric-ferromagnetic composites with good magnetoelectric coupling.
ISSN:0003-6951
1077-3118
DOI:10.1063/1.5059550