Photogating and high gain in ReS2 field-effect transistors
Two-dimensional layered transition metal dichalcogenides have shown much promise due to their remarkable electro-optical properties and potential use as photodetectors. We observed photogating in our few-layered (3–4 layers) ReS 2 field-effect transistors (FETs) in which varying the incident optical...
Gespeichert in:
Veröffentlicht in: | Journal of applied physics 2018-11, Vol.124 (20) |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Two-dimensional layered transition metal dichalcogenides have shown much promise due to their remarkable electro-optical properties and potential use as photodetectors. We observed photogating in our few-layered (3–4 layers) ReS
2 field-effect transistors (FETs) in which varying the incident optical power shifted the FETs’ threshold voltage. The photogating effect produced a significant gain in the electrical response of the FETs to incident light as measured by the responsivity (R) and external quantum efficiency (EQE). We obtained a maximum R of 45 A/W corresponding to an EQE of
∼10 500% in a four-terminal measurement of the photoconductivity in the ON-state. We attribute both the photogating and the observed gain to the influence of charge traps. An estimate of the device gain based on our observations is calculated to be
5×104. |
---|---|
ISSN: | 0021-8979 1089-7550 |
DOI: | 10.1063/1.5050821 |