A simple atomic force microscope-based method for quantifying wear of sliding probes

Sliding wear is particularly problematic for micro- and nano-scale devices and applications, and is often studied at the small scale to develop practical and fundamental insights. While many methods exist to measure and quantify the wear of a sliding atomic force microscope (AFM) probe, many of thes...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Review of scientific instruments 2018-11, Vol.89 (11), p.113708-113708
Hauptverfasser: Flater, Erin E., Barnes, Jared D., Hitz Graff, Jesse A., Weaver, Jayse M., Ansari, Naveed, Poda, Aimee R., Robert Ashurst, W., Khanal, Subarna R., Jacobs, Tevis D. B.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 113708
container_issue 11
container_start_page 113708
container_title Review of scientific instruments
container_volume 89
creator Flater, Erin E.
Barnes, Jared D.
Hitz Graff, Jesse A.
Weaver, Jayse M.
Ansari, Naveed
Poda, Aimee R.
Robert Ashurst, W.
Khanal, Subarna R.
Jacobs, Tevis D. B.
description Sliding wear is particularly problematic for micro- and nano-scale devices and applications, and is often studied at the small scale to develop practical and fundamental insights. While many methods exist to measure and quantify the wear of a sliding atomic force microscope (AFM) probe, many of these rely on specialized equipment and/or assumptions from continuum mechanics. Here we present a methodology that enables simple, purely AFM-based measurement of wear, in cases where the AFM probe wears to a flat plateau. The rate of volume removal is recast into a form that depends primarily on the time-varying contact area. This contact area is determined using images of sharp spikes, which are analyzed with a simple thresholding technique, rather than requiring sophisticated computer algorithms or continuum mechanics assumptions. This approach enables the rapid determination of volume lost, rate of material removal, normal stress, and interfacial shear stress at various points throughout the wear experiment. The method is demonstrated using silicon probes sliding on an aluminum oxide substrate. As a validation for the present method, direct imaging in the transmission electron microscope is used to verify the method’s parameters and results. Overall, it is envisioned that this purely AFM-based methodology will enable higher-throughput wear experiments and direct hypothesis-based investigation into the science of wear and its dependence on different variables.
doi_str_mv 10.1063/1.5048584
format Article
fullrecord <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_scitation_primary_10_1063_1_5048584</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2149033097</sourcerecordid><originalsourceid>FETCH-LOGICAL-c383t-5957426ffb0e617f09a9567df4dbfcfcab3fc9f3e224f09f5486d5aaba7824e3</originalsourceid><addsrcrecordid>eNp90E1LwzAYB_AgipvTg19AAl5U6EyapGmPY_gGAy-7lzQvmtE2NWmVfXtTNhUEzSUJz4_nSf4AnGM0xygjt3jOEM1ZTg_AFKO8SHiWkkMwRYjQJOM0n4CTEDYoLobxMZgQxBAmtJiC9QIG23S1hqJ3jZXQOC81jCfvgnSdTioRtIKN7l-dGqvwbRBtb83Wti_wQwsPnYGhtmq8d95VOpyCIyPqoM_2-wys7-_Wy8dk9fzwtFysEkly0iesYJymmTEV0hnmBhWiYBlXhqrKSCNFRYwsDNFpSmPRMJpniglRCZ6nVJMZuNq1jVPfBh36srFB6roWrXZDKFNMC0QIKnikl7_oxg2-jY-LijCCecwxquudGj8fvDZl520j_LbEqByTLnG5Tzrai33HoWq0-pZf0UZwswNB2l701rX_dvsTvzv_A8tOGfIJY0aUUQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2135317063</pqid></control><display><type>article</type><title>A simple atomic force microscope-based method for quantifying wear of sliding probes</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><creator>Flater, Erin E. ; Barnes, Jared D. ; Hitz Graff, Jesse A. ; Weaver, Jayse M. ; Ansari, Naveed ; Poda, Aimee R. ; Robert Ashurst, W. ; Khanal, Subarna R. ; Jacobs, Tevis D. B.</creator><creatorcontrib>Flater, Erin E. ; Barnes, Jared D. ; Hitz Graff, Jesse A. ; Weaver, Jayse M. ; Ansari, Naveed ; Poda, Aimee R. ; Robert Ashurst, W. ; Khanal, Subarna R. ; Jacobs, Tevis D. B.</creatorcontrib><description>Sliding wear is particularly problematic for micro- and nano-scale devices and applications, and is often studied at the small scale to develop practical and fundamental insights. While many methods exist to measure and quantify the wear of a sliding atomic force microscope (AFM) probe, many of these rely on specialized equipment and/or assumptions from continuum mechanics. Here we present a methodology that enables simple, purely AFM-based measurement of wear, in cases where the AFM probe wears to a flat plateau. The rate of volume removal is recast into a form that depends primarily on the time-varying contact area. This contact area is determined using images of sharp spikes, which are analyzed with a simple thresholding technique, rather than requiring sophisticated computer algorithms or continuum mechanics assumptions. This approach enables the rapid determination of volume lost, rate of material removal, normal stress, and interfacial shear stress at various points throughout the wear experiment. The method is demonstrated using silicon probes sliding on an aluminum oxide substrate. As a validation for the present method, direct imaging in the transmission electron microscope is used to verify the method’s parameters and results. Overall, it is envisioned that this purely AFM-based methodology will enable higher-throughput wear experiments and direct hypothesis-based investigation into the science of wear and its dependence on different variables.</description><identifier>ISSN: 0034-6748</identifier><identifier>EISSN: 1089-7623</identifier><identifier>DOI: 10.1063/1.5048584</identifier><identifier>PMID: 30501349</identifier><identifier>CODEN: RSINAK</identifier><language>eng</language><publisher>United States: American Institute of Physics</publisher><subject>Aluminum oxide ; Atomic force microscopes ; Atomic force microscopy ; Continuum mechanics ; Dependence ; Frictional wear ; Interfacial shear stresses ; Measurement methods ; Microscopes ; Scientific apparatus &amp; instruments ; Sliding friction ; Substrates</subject><ispartof>Review of scientific instruments, 2018-11, Vol.89 (11), p.113708-113708</ispartof><rights>Author(s)</rights><rights>2018 Author(s). Published by AIP Publishing.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c383t-5957426ffb0e617f09a9567df4dbfcfcab3fc9f3e224f09f5486d5aaba7824e3</citedby><cites>FETCH-LOGICAL-c383t-5957426ffb0e617f09a9567df4dbfcfcab3fc9f3e224f09f5486d5aaba7824e3</cites><orcidid>0000-0001-8576-914X ; 0000-0002-6032-7879 ; 0000000260327879 ; 000000018576914X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/rsi/article-lookup/doi/10.1063/1.5048584$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>314,776,780,790,4498,27901,27902,76353</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30501349$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Flater, Erin E.</creatorcontrib><creatorcontrib>Barnes, Jared D.</creatorcontrib><creatorcontrib>Hitz Graff, Jesse A.</creatorcontrib><creatorcontrib>Weaver, Jayse M.</creatorcontrib><creatorcontrib>Ansari, Naveed</creatorcontrib><creatorcontrib>Poda, Aimee R.</creatorcontrib><creatorcontrib>Robert Ashurst, W.</creatorcontrib><creatorcontrib>Khanal, Subarna R.</creatorcontrib><creatorcontrib>Jacobs, Tevis D. B.</creatorcontrib><title>A simple atomic force microscope-based method for quantifying wear of sliding probes</title><title>Review of scientific instruments</title><addtitle>Rev Sci Instrum</addtitle><description>Sliding wear is particularly problematic for micro- and nano-scale devices and applications, and is often studied at the small scale to develop practical and fundamental insights. While many methods exist to measure and quantify the wear of a sliding atomic force microscope (AFM) probe, many of these rely on specialized equipment and/or assumptions from continuum mechanics. Here we present a methodology that enables simple, purely AFM-based measurement of wear, in cases where the AFM probe wears to a flat plateau. The rate of volume removal is recast into a form that depends primarily on the time-varying contact area. This contact area is determined using images of sharp spikes, which are analyzed with a simple thresholding technique, rather than requiring sophisticated computer algorithms or continuum mechanics assumptions. This approach enables the rapid determination of volume lost, rate of material removal, normal stress, and interfacial shear stress at various points throughout the wear experiment. The method is demonstrated using silicon probes sliding on an aluminum oxide substrate. As a validation for the present method, direct imaging in the transmission electron microscope is used to verify the method’s parameters and results. Overall, it is envisioned that this purely AFM-based methodology will enable higher-throughput wear experiments and direct hypothesis-based investigation into the science of wear and its dependence on different variables.</description><subject>Aluminum oxide</subject><subject>Atomic force microscopes</subject><subject>Atomic force microscopy</subject><subject>Continuum mechanics</subject><subject>Dependence</subject><subject>Frictional wear</subject><subject>Interfacial shear stresses</subject><subject>Measurement methods</subject><subject>Microscopes</subject><subject>Scientific apparatus &amp; instruments</subject><subject>Sliding friction</subject><subject>Substrates</subject><issn>0034-6748</issn><issn>1089-7623</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp90E1LwzAYB_AgipvTg19AAl5U6EyapGmPY_gGAy-7lzQvmtE2NWmVfXtTNhUEzSUJz4_nSf4AnGM0xygjt3jOEM1ZTg_AFKO8SHiWkkMwRYjQJOM0n4CTEDYoLobxMZgQxBAmtJiC9QIG23S1hqJ3jZXQOC81jCfvgnSdTioRtIKN7l-dGqvwbRBtb83Wti_wQwsPnYGhtmq8d95VOpyCIyPqoM_2-wys7-_Wy8dk9fzwtFysEkly0iesYJymmTEV0hnmBhWiYBlXhqrKSCNFRYwsDNFpSmPRMJpniglRCZ6nVJMZuNq1jVPfBh36srFB6roWrXZDKFNMC0QIKnikl7_oxg2-jY-LijCCecwxquudGj8fvDZl520j_LbEqByTLnG5Tzrai33HoWq0-pZf0UZwswNB2l701rX_dvsTvzv_A8tOGfIJY0aUUQ</recordid><startdate>201811</startdate><enddate>201811</enddate><creator>Flater, Erin E.</creator><creator>Barnes, Jared D.</creator><creator>Hitz Graff, Jesse A.</creator><creator>Weaver, Jayse M.</creator><creator>Ansari, Naveed</creator><creator>Poda, Aimee R.</creator><creator>Robert Ashurst, W.</creator><creator>Khanal, Subarna R.</creator><creator>Jacobs, Tevis D. B.</creator><general>American Institute of Physics</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-8576-914X</orcidid><orcidid>https://orcid.org/0000-0002-6032-7879</orcidid><orcidid>https://orcid.org/0000000260327879</orcidid><orcidid>https://orcid.org/000000018576914X</orcidid></search><sort><creationdate>201811</creationdate><title>A simple atomic force microscope-based method for quantifying wear of sliding probes</title><author>Flater, Erin E. ; Barnes, Jared D. ; Hitz Graff, Jesse A. ; Weaver, Jayse M. ; Ansari, Naveed ; Poda, Aimee R. ; Robert Ashurst, W. ; Khanal, Subarna R. ; Jacobs, Tevis D. B.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c383t-5957426ffb0e617f09a9567df4dbfcfcab3fc9f3e224f09f5486d5aaba7824e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Aluminum oxide</topic><topic>Atomic force microscopes</topic><topic>Atomic force microscopy</topic><topic>Continuum mechanics</topic><topic>Dependence</topic><topic>Frictional wear</topic><topic>Interfacial shear stresses</topic><topic>Measurement methods</topic><topic>Microscopes</topic><topic>Scientific apparatus &amp; instruments</topic><topic>Sliding friction</topic><topic>Substrates</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Flater, Erin E.</creatorcontrib><creatorcontrib>Barnes, Jared D.</creatorcontrib><creatorcontrib>Hitz Graff, Jesse A.</creatorcontrib><creatorcontrib>Weaver, Jayse M.</creatorcontrib><creatorcontrib>Ansari, Naveed</creatorcontrib><creatorcontrib>Poda, Aimee R.</creatorcontrib><creatorcontrib>Robert Ashurst, W.</creatorcontrib><creatorcontrib>Khanal, Subarna R.</creatorcontrib><creatorcontrib>Jacobs, Tevis D. B.</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Review of scientific instruments</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Flater, Erin E.</au><au>Barnes, Jared D.</au><au>Hitz Graff, Jesse A.</au><au>Weaver, Jayse M.</au><au>Ansari, Naveed</au><au>Poda, Aimee R.</au><au>Robert Ashurst, W.</au><au>Khanal, Subarna R.</au><au>Jacobs, Tevis D. B.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A simple atomic force microscope-based method for quantifying wear of sliding probes</atitle><jtitle>Review of scientific instruments</jtitle><addtitle>Rev Sci Instrum</addtitle><date>2018-11</date><risdate>2018</risdate><volume>89</volume><issue>11</issue><spage>113708</spage><epage>113708</epage><pages>113708-113708</pages><issn>0034-6748</issn><eissn>1089-7623</eissn><coden>RSINAK</coden><abstract>Sliding wear is particularly problematic for micro- and nano-scale devices and applications, and is often studied at the small scale to develop practical and fundamental insights. While many methods exist to measure and quantify the wear of a sliding atomic force microscope (AFM) probe, many of these rely on specialized equipment and/or assumptions from continuum mechanics. Here we present a methodology that enables simple, purely AFM-based measurement of wear, in cases where the AFM probe wears to a flat plateau. The rate of volume removal is recast into a form that depends primarily on the time-varying contact area. This contact area is determined using images of sharp spikes, which are analyzed with a simple thresholding technique, rather than requiring sophisticated computer algorithms or continuum mechanics assumptions. This approach enables the rapid determination of volume lost, rate of material removal, normal stress, and interfacial shear stress at various points throughout the wear experiment. The method is demonstrated using silicon probes sliding on an aluminum oxide substrate. As a validation for the present method, direct imaging in the transmission electron microscope is used to verify the method’s parameters and results. Overall, it is envisioned that this purely AFM-based methodology will enable higher-throughput wear experiments and direct hypothesis-based investigation into the science of wear and its dependence on different variables.</abstract><cop>United States</cop><pub>American Institute of Physics</pub><pmid>30501349</pmid><doi>10.1063/1.5048584</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0001-8576-914X</orcidid><orcidid>https://orcid.org/0000-0002-6032-7879</orcidid><orcidid>https://orcid.org/0000000260327879</orcidid><orcidid>https://orcid.org/000000018576914X</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0034-6748
ispartof Review of scientific instruments, 2018-11, Vol.89 (11), p.113708-113708
issn 0034-6748
1089-7623
language eng
recordid cdi_scitation_primary_10_1063_1_5048584
source AIP Journals Complete; Alma/SFX Local Collection
subjects Aluminum oxide
Atomic force microscopes
Atomic force microscopy
Continuum mechanics
Dependence
Frictional wear
Interfacial shear stresses
Measurement methods
Microscopes
Scientific apparatus & instruments
Sliding friction
Substrates
title A simple atomic force microscope-based method for quantifying wear of sliding probes
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-19T22%3A52%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20simple%20atomic%20force%20microscope-based%20method%20for%20quantifying%20wear%20of%20sliding%20probes&rft.jtitle=Review%20of%20scientific%20instruments&rft.au=Flater,%20Erin%20E.&rft.date=2018-11&rft.volume=89&rft.issue=11&rft.spage=113708&rft.epage=113708&rft.pages=113708-113708&rft.issn=0034-6748&rft.eissn=1089-7623&rft.coden=RSINAK&rft_id=info:doi/10.1063/1.5048584&rft_dat=%3Cproquest_scita%3E2149033097%3C/proquest_scita%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2135317063&rft_id=info:pmid/30501349&rfr_iscdi=true