On the uniqueness of L∞ bootstrap: Quasi-isomorphisms are Seiberg-Witten maps

In the context of the recently proposed L∞ bootstrap approach, the question arises whether the so constructed gauge theories are unique solutions of the L∞ relations. Physically, it is expected that two gauge theories should be considered equivalent if they are related by a field redefinition descri...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of mathematical physics 2018-12, Vol.59 (12)
Hauptverfasser: Blumenhagen, Ralph, Brinkmann, Max, Kupriyanov, Vladislav, Traube, Matthias
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In the context of the recently proposed L∞ bootstrap approach, the question arises whether the so constructed gauge theories are unique solutions of the L∞ relations. Physically, it is expected that two gauge theories should be considered equivalent if they are related by a field redefinition described by a Seiberg-Witten map. To clarify the consequences in the L∞ framework, it is proven that Seiberg-Witten maps between physically equivalent gauge theories correspond to certain relations of quasi-isomorphisms of the underlying L∞ algebras. The proof suggests an extension of the definition of a Seiberg-Witten map to the closure conditions of two gauge transformations and the dynamical equations of motion.
ISSN:0022-2488
1089-7658
DOI:10.1063/1.5048352