GaSb-based diode lasers with asymmetric coupled quantum wells

Asymmetric tunnel coupled quantum wells with built-in resonant second order nonlinearity were designed and fabricated within the antimonide material system. The quantum wells demonstrated intensive photo- and electroluminescence responses associated with optical transitions between two tunnel-split...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied physics letters 2018-08, Vol.113 (7)
Hauptverfasser: Jiang, Jiang, Shterengas, Leon, Hosoda, Takashi, Belyanin, Alexei, Kipshidze, Gela, Belenky, Gregory
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Asymmetric tunnel coupled quantum wells with built-in resonant second order nonlinearity were designed and fabricated within the antimonide material system. The quantum wells demonstrated intensive photo- and electroluminescence responses associated with optical transitions between two tunnel-split conduction band subbands and one valence band subband. The thickness of the tunnel barrier defined the optical gain bandwidth and resonance energy for the difference frequency generation. The test diode lasers based on asymmetric quantum wells with a conduction subband splitting of about 25 meV operated near 2.1 μm at room temperature and demonstrated high differential gain and excellent performance parameters. The experimental modal gain spectra showed relatively flat top and an extended bandwidth at high pumping levels.
ISSN:0003-6951
1077-3118
DOI:10.1063/1.5046426