Fermion condensation and super pivotal categories
We study fermionic topological phases using the technique of fermion condensation. We give a prescription for performing fermion condensation in bosonic topological phases that contain a fermion. Our approach to fermion condensation can roughly be understood as coupling the parent bosonic topologica...
Gespeichert in:
Veröffentlicht in: | Journal of mathematical physics 2019-12, Vol.60 (12) |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We study fermionic topological phases using the technique of fermion condensation. We give a prescription for performing fermion condensation in bosonic topological phases that contain a fermion. Our approach to fermion condensation can roughly be understood as coupling the parent bosonic topological phase to a phase of physical fermions and condensing pairs of physical and emergent fermions. There are two distinct types of objects in the resulting fermionic fusion categories, which we call “m-type” and “q-type” objects. The endomorphism algebras of q-type objects are complex Clifford algebras, and they have no analogs in bosonic theories. We construct a fermionic generalization of the tube category, which allows us to compute the quasiparticle excitations arising from the condensed theories. We prove a series of results relating data in fermionic theories to data in their parent bosonic theories; for example, if
C
is a modular tensor category containing a fermion, then the tube category constructed from the condensed theory satisfies
T
u
b
e
(
C
/
ψ
)
≅
C
×
(
C
/
ψ
)
. We also study how modular transformations, fusion rules, and coherence relations are modified in the fermionic setting, prove a fermionic version of the Verlinde dimension formula, construct a commuting projector lattice Hamiltonian for fermionic theories, and write down a fermionic version of the Turaev-Viro-Barrett-Westbury state sum. A large portion of this work is devoted to three detailed examples of performing fermion condensation to produce fermionic topological phases: we condense fermions in the Ising theory, the SO(3)6 theory, and the
1
2
E
6
theory and compute the quasiparticle excitation spectrum in each of the condensed theories. |
---|---|
ISSN: | 0022-2488 1089-7658 |
DOI: | 10.1063/1.5045669 |