Fermion condensation and super pivotal categories

We study fermionic topological phases using the technique of fermion condensation. We give a prescription for performing fermion condensation in bosonic topological phases that contain a fermion. Our approach to fermion condensation can roughly be understood as coupling the parent bosonic topologica...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of mathematical physics 2019-12, Vol.60 (12)
Hauptverfasser: Aasen, David, Lake, Ethan, Walker, Kevin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We study fermionic topological phases using the technique of fermion condensation. We give a prescription for performing fermion condensation in bosonic topological phases that contain a fermion. Our approach to fermion condensation can roughly be understood as coupling the parent bosonic topological phase to a phase of physical fermions and condensing pairs of physical and emergent fermions. There are two distinct types of objects in the resulting fermionic fusion categories, which we call “m-type” and “q-type” objects. The endomorphism algebras of q-type objects are complex Clifford algebras, and they have no analogs in bosonic theories. We construct a fermionic generalization of the tube category, which allows us to compute the quasiparticle excitations arising from the condensed theories. We prove a series of results relating data in fermionic theories to data in their parent bosonic theories; for example, if C is a modular tensor category containing a fermion, then the tube category constructed from the condensed theory satisfies T u b e ( C / ψ ) ≅ C × ( C / ψ ) . We also study how modular transformations, fusion rules, and coherence relations are modified in the fermionic setting, prove a fermionic version of the Verlinde dimension formula, construct a commuting projector lattice Hamiltonian for fermionic theories, and write down a fermionic version of the Turaev-Viro-Barrett-Westbury state sum. A large portion of this work is devoted to three detailed examples of performing fermion condensation to produce fermionic topological phases: we condense fermions in the Ising theory, the SO(3)6 theory, and the 1 2 E 6 theory and compute the quasiparticle excitation spectrum in each of the condensed theories.
ISSN:0022-2488
1089-7658
DOI:10.1063/1.5045669