Unentangled measurements and frame functions

Gleason’s theorem asserts the equivalence of von Neumann’s density operator formalism of quantum mechanics and frame functions, which are functions on the pure states that sum to 1 on any orthonormal basis of Hilbert space of dimension at least 3. The unentangled frame functions are initially only d...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of mathematical physics 2018-06, Vol.59 (6)
Hauptverfasser: Lebl, Jiří, Shakeel, Asif, Wallach, Nolan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Gleason’s theorem asserts the equivalence of von Neumann’s density operator formalism of quantum mechanics and frame functions, which are functions on the pure states that sum to 1 on any orthonormal basis of Hilbert space of dimension at least 3. The unentangled frame functions are initially only defined on unentangled (that is, product) states in a multi-partite system. The third author’s unentangled Gleason’s theorem shows that unentangled frame functions determine unique density operators if and only if each subsystem is at least 3-dimensional. In this paper, we determine the structure of unentangled frame functions in general. We first classify them for multi-qubit systems and then extend the results to factors of varying dimensions including countably infinite dimensions (separable Hilbert spaces). A remarkable combinatorial structure emerges, suggesting possible fundamental interpretations.
ISSN:0022-2488
1089-7658
DOI:10.1063/1.5042336