Apparatus for soft x-ray table-top high harmonic generation

There has been considerable recent interest in tabletop soft X-ray attosecond sources enabled by the new generation of intense, few-cycle laser sources at operating wavelengths longer than 800 nm. In our recent work [Johnson et al., Sci. Adv. 4(5), eaar3761 (2018)], we have demonstrated a new regime...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Review of scientific instruments 2018-08, Vol.89 (8), p.083110-083110
Hauptverfasser: Johnson, Allan S., Wood, David, Austin, Dane R., Brahms, Christian, Gregory, Andrew, Holzner, Konstantin B., Jarosch, Sebastian, Larsen, Esben W., Parker, Susan, Strüber, Christian, Ye, Peng, Tisch, John W. G., Marangos, Jon P.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:There has been considerable recent interest in tabletop soft X-ray attosecond sources enabled by the new generation of intense, few-cycle laser sources at operating wavelengths longer than 800 nm. In our recent work [Johnson et al., Sci. Adv. 4(5), eaar3761 (2018)], we have demonstrated a new regime for the generation of X-ray attosecond pulses in the water window (284-540 eV) by high-harmonic generation, which resulted in soft X-ray fluxes of ≈109 photons/s and a maximum photon energy of 600 eV, an order of magnitude and 50 eV higher, respectively, than previously attained with few-cycle drivers. Here we present the key elements of our apparatus for the generation and detection of soft X-ray high harmonic radiation in the water window. Of critical importance is a differentially pumped gas target capable of supporting the multi-atmospheric pressures required to phase-match the high energy emission while strongly constraining the gas density, suppressing the effects of ionization and absorption outside the interaction region.
ISSN:0034-6748
1089-7623
DOI:10.1063/1.5041498