Ground state solutions for generalized quasilinear Schrödinger equations with variable potentials and Berestycki-Lions nonlinearities
By introducing some new tricks, we prove that the following generalized quasilinear Schrödinger equation −div(g2(u)∇u)+g(u)g′(u)|∇u|2+V(x)u=f(u), x∈RN admits two classes of ground state solutions under the general “Berestycki-Lions assumptions” on the nonlinearity f which are almost necessary condit...
Gespeichert in:
Veröffentlicht in: | Journal of mathematical physics 2018-08, Vol.59 (8) |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | By introducing some new tricks, we prove that the following generalized quasilinear Schrödinger equation −div(g2(u)∇u)+g(u)g′(u)|∇u|2+V(x)u=f(u), x∈RN admits two classes of ground state solutions under the general “Berestycki-Lions assumptions” on the nonlinearity f which are almost necessary conditions, as well as some weak assumptions on the potential V. Moreover, we also give a minimax characterization of the ground state energy. Our results improve and complement the previous ones in the literature. |
---|---|
ISSN: | 0022-2488 1089-7658 |
DOI: | 10.1063/1.5036570 |