Ground state solutions for generalized quasilinear Schrödinger equations with variable potentials and Berestycki-Lions nonlinearities

By introducing some new tricks, we prove that the following generalized quasilinear Schrödinger equation −div(g2(u)∇u)+g(u)g′(u)|∇u|2+V(x)u=f(u), x∈RN admits two classes of ground state solutions under the general “Berestycki-Lions assumptions” on the nonlinearity f which are almost necessary condit...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of mathematical physics 2018-08, Vol.59 (8)
Hauptverfasser: Chen, Sitong, Tang, Xianhua
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:By introducing some new tricks, we prove that the following generalized quasilinear Schrödinger equation −div(g2(u)∇u)+g(u)g′(u)|∇u|2+V(x)u=f(u), x∈RN admits two classes of ground state solutions under the general “Berestycki-Lions assumptions” on the nonlinearity f which are almost necessary conditions, as well as some weak assumptions on the potential V. Moreover, we also give a minimax characterization of the ground state energy. Our results improve and complement the previous ones in the literature.
ISSN:0022-2488
1089-7658
DOI:10.1063/1.5036570