Failure prediction for the optimization of stretch forming aluminium-polymer laminate foils used for pharmaceutical packaging

Axisymmetric stretch forming processes of aluminium-polymer laminate foils (e.g. consisting of PA-Al-PVC layers) are analyzed numerically by finite element modeling of the multi-layer material as well as experimentally in order to identify a suitable damage initiation criterion. A simple ductile fra...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Müller, Simon, Weygand, Sabine M.
Format: Tagungsbericht
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Axisymmetric stretch forming processes of aluminium-polymer laminate foils (e.g. consisting of PA-Al-PVC layers) are analyzed numerically by finite element modeling of the multi-layer material as well as experimentally in order to identify a suitable damage initiation criterion. A simple ductile fracture criterion is proposed to predict the forming limits. The corresponding material constants are determined from tensile tests and then applied in forming simulations with different punch geometries. A comparison between the simulations and the experimental results shows that the determined failure constants are not applicable. Therefore, one forming experiment was selected and in the corresponding simulation the failure constant was fitted to its measured maximum stretch. With this approach it is possible to predict the forming limit of the laminate foil with satisfying accuracy for different punch geometries.
ISSN:0094-243X
1551-7616
DOI:10.1063/1.5034818