Comparing strategies for improving efficiencies in vacuum processed Cu2ZnSnSe4 solar cells

In this study, we detail a Cu2ZnSnSe4 based solar cell fabrication process based on the selenization of metallic precursor stacks with elemental Se. 9.4% efficient devices without antireflection coating have been obtained. First, reproducibility issues of the process are carefully shown and discusse...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of renewable and sustainable energy 2018-07, Vol.10 (4)
Hauptverfasser: Grenet, Louis, Suzon, Md Abdul Aziz, Emieux, Fabrice, Roux, Frédéric
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this study, we detail a Cu2ZnSnSe4 based solar cell fabrication process based on the selenization of metallic precursor stacks with elemental Se. 9.4% efficient devices without antireflection coating have been obtained. First, reproducibility issues of the process are carefully shown and discussed. It is demonstrated that device performances are strongly impacted by the precise control of the precursor composition. Then, starting from this robust process, a review of existing strategies to improve kesterite efficiencies is conducted. A significant increase in efficiency (+1.4% absolute efficiency and +50 mV VOC) is obtained with absorber surface treatment and post-annealing, while no effect of Ge incorporation in the precursor stack is observed. This contradictory result to most of the recent publications raises the question of the universality of this strategy to improve kesterite solar cell performance. Finding a universal activation step to boost kesterite efficiencies and bring it to the market remains a crucial need for the community.
ISSN:1941-7012
1941-7012
DOI:10.1063/1.5034526