Physical investigation of gate capacitance in In0.53Ga0.47As/In0.52Al0.48As quantum-well metal-oxide-semiconductor field-effect-transistors
In this paper, we aim to decompose gate capacitance components in InGaAs/InAlAs quantum-well (QW) metal-oxide-semiconductor field-effect-transistors (MOSFETs), in an effort to physically investigate their gate capacitance (Cg). First, we verified their validity with 1-D simulation and experimental C...
Gespeichert in:
Veröffentlicht in: | AIP advances 2018-07, Vol.8 (7), p.075203-075203-7 |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper, we aim to decompose gate capacitance components in InGaAs/InAlAs quantum-well (QW) metal-oxide-semiconductor field-effect-transistors (MOSFETs), in an effort to physically investigate their gate capacitance (Cg). First, we verified their validity with 1-D simulation and experimental Cg data in various types of InGaAs/InAlAs QW MOSFETs with different channel thickness (tch). Both quantum capacitance (CQ) and centroid capacitance (Ccent) were highly relevant to total gate capacitance (Cg) of the InGaAs/InAlAs QW MOSFETs. Second, the total Cg did not saturate at a strong inversion regime. This is a consequence of the second subband inversion layer capacitance (Cinv_2) and, more importantly, its increase with VG. Lastly, we studied the role of channel thickness (tch) scaling, which helps to increase the total gate capacitance by enhancing both CQ and Ccent. |
---|---|
ISSN: | 2158-3226 2158-3226 |
DOI: | 10.1063/1.5034041 |