The effect of alkaline treatment and fiber orientation on impact resistant of bio-composites Sansevieria trifasciata fiber/polypropylene as automotive components material

The increasing amount of car usage is causing an escalated amount of fuel consumption and CO2 emission. It implicates demand for the automotive industry to increase the efficiency of their products, One of the most effective ways to solve the issue is to find green weight light material for the inte...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Shieddieque, Apang Djafar, Mardiyati, Suratman, Rochim, Widyanto, Bambang
Format: Tagungsbericht
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The increasing amount of car usage is causing an escalated amount of fuel consumption and CO2 emission. It implicates demand for the automotive industry to increase the efficiency of their products, One of the most effective ways to solve the issue is to find green weight light material for the interior automotive component. The Aim of this research was to investigate the effect of alkaline treatment and fiber orientation on the impact resistant of material bio- composite sansevieiria trifasciata fiber/Polypropylene. In this research, bio-composites sansevieria trifasciata fiber/Polypropylene was prepared with random fiber orientation and unidirectional orientation by using a hot press method with pressure 140 Bar and temperature 240°C. Fiber was taken from Sansevieria trifasciata by using mechanical retting. In this study, Sansevieria fiber was given alkaline treatment (mercerization) with NaOH 3% (w/w) solution at temperature 100°C for an hour. The fraction of fiber volume that were used in this experiment are 0%, 5%, 10%, and 15%. The impact test was conducted based on ASTM D 6110 - 04, and the fracture analysis was investigated by scanning electron microscope (SEM). The best result of impact toughness and fracture analysis were achieved by bio composite untreated and unidirectional sansevieria trifasciata fiber/Polypropylene with fiber volume fraction of 15%, which was 48.092kJ/m2 for impact resistant. As compared to the impact toughness standard, which needed for interior automotive component, the impact toughness of sansevieria trifasciata fiber/Polypropylene has fulfilled the standard of the interior material automotive industry. Therefore, this material can be potentially used as materials on the car exterior component.
ISSN:0094-243X
1551-7616
DOI:10.1063/1.5030263