The Duistermaat-Heckman formula with application to circle actions and Poincaré q-polynomials in twisted equivariant K-theory

In this paper, we deduce the sketch of proof of the Duistermaat-Heckman formula and investigate how the known Duistermaat-Heckman result could be specialized to the symplectic structure on the orbit space. The theorems of localization in equivariant cohomology not only provide us with beautiful math...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of mathematical physics 2019-01, Vol.60 (1)
Hauptverfasser: Bytsenko, A. A., Chaichian, M., Gonçalves, A. E.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, we deduce the sketch of proof of the Duistermaat-Heckman formula and investigate how the known Duistermaat-Heckman result could be specialized to the symplectic structure on the orbit space. The theorems of localization in equivariant cohomology not only provide us with beautiful mathematical formulas and stimulate achievements in algorithmic computations but also promote progress in theoretical and mathematical physics. We present the elliptic genera and the characteristic q-series for the circle actions and twisted equivariant K-theory, with the case of the symmetric group of n symbols separately analyzed. We show that the Poincaré q-polynomials admit presentation in terms of the Patterson-Selberg (or the Ruelle-type) spectral functions.
ISSN:0022-2488
1089-7658
DOI:10.1063/1.5030105