Thermodiffusion as a probe of protein hydration for streptavidin and the streptavidin-biotin complex

Molecular recognition via protein–ligand interactions is of fundamental importance to numerous processes in living organisms. Microscale thermophoresis (MST) uses the sensitivity of the thermophoretic response upon ligand binding to access information on the reaction kinetics. Additionally, thermoph...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Niether, Doreen, Sarter, Mona, König, Bernd, Zamponi, Michaela, Fitter, Jörg, Stadler, Andreas, Wiegand, Simone
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Molecular recognition via protein–ligand interactions is of fundamental importance to numerous processes in living organisms. Microscale thermophoresis (MST) uses the sensitivity of the thermophoretic response upon ligand binding to access information on the reaction kinetics. Additionally, thermophoresis is promising as a tool to gain information on the hydration layer, as the temperature dependence of the thermodiffusion behaviour is sensitive to solute-solvent interactions. To quantify the influence of structural fluctuations and conformational motion of the protein on the entropy change of its hydration layer upon ligand binding, we combine quasi-elastic incoherent neutron scattering (QENS) and isothermal titration calorimetry (ITC) data from literature. However, preliminary results show that replacing water with deuterated water leads to changes of the thermophoretic measurements, which are similar to the changes observed upon binding by biotin. In order to gain a better understanding of the hydration layer all measurements need to be performed in heavy water. This will open a route to develop a microscopic understanding of the correlation between the strength and number of hydrogen bonds and the thermophoretic behaviour.
ISSN:0094-243X
1551-7616
DOI:10.1063/1.5021914