Configuring PSx tetrahedral clusters in Li-excess Li7P3S11 solid electrolyte
We demonstrate that the Li-ion conductivity can be improved by adding a certain amount of Li (x = 0.25–0.5) as a charge carrier to the composition of glass-ceramic Li7+xP3S11. Structural analysis clarified that the structural changes caused by the ratio of ortho-thiophosphate tetrahedra PS43− and py...
Gespeichert in:
Veröffentlicht in: | APL materials 2018-04, Vol.6 (4), p.047902-047902-6 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We demonstrate that the Li-ion conductivity can be improved by adding a certain amount of Li (x = 0.25–0.5) as a charge carrier to the composition of glass-ceramic Li7+xP3S11. Structural analysis clarified that the structural changes caused by the ratio of ortho-thiophosphate tetrahedra PS43− and pyro-thiophosphate ditetrahedra P2S74− affect the Li-ion conductivity. The ratio of PS43− and P2S74− varies depending on x and the highest Li-ion conductivity (2.5 × 10−3 S cm−1) at x = 0.25. All-solid-state LiNi0.8Co0.15Al0.05O2/Li7.25P3S11/In-metal cell exhibits the discharge capacity of 106.2 mAh g−1. This ion conduction enhancement from excess Li is expected to contribute to the future design of sulfide-type electrolytes. |
---|---|
ISSN: | 2166-532X 2166-532X |
DOI: | 10.1063/1.5011105 |