Cell micro-irradiation with MeV protons counted by an ultra-thin diamond membrane
We report the development of thin single crystal diamond membranes suitable for dose control in targeted cell irradiation experiments with a proton microbeam. A specific design was achieved to deliver single protons with a hit detection efficiency approaching 100%. The membranes have thicknesses bet...
Gespeichert in:
Veröffentlicht in: | Applied physics letters 2017-12, Vol.111 (24) |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We report the development of thin single crystal diamond membranes suitable for dose control in targeted cell irradiation experiments with a proton microbeam. A specific design was achieved to deliver single protons with a hit detection efficiency approaching 100%. The membranes have thicknesses between 1.8 and 3 μm and are used as vacuum windows on the microbeam line. The impact of these transmission detectors on the microbeam spot size is estimated by Monte-Carlo simulations, indicating that a beam lateral resolution below 2 μm is achieved. This is confirmed by experiments showing the accumulation online of X-ray Repair Cross-Complementing protein 1 (XRCC1)-Green Fluorescent Protein (GFP) at DNA damaged sites in living cells. |
---|---|
ISSN: | 0003-6951 1077-3118 |
DOI: | 10.1063/1.5009713 |