Elastic metasurfaces for splitting SV- and P-waves in elastic solids

Although recent advances have made it possible to manipulate electromagnetic and acoustic wavefronts with sub-wavelength metasurface slabs, the design of elastodynamic counterparts remains challenging. We introduce a novel but simple design approach to control SV-waves in elastic solids. The propose...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of applied physics 2018-03, Vol.123 (9)
Hauptverfasser: Su, Xiaoshi, Lu, Zhaocheng, Norris, Andrew N.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Although recent advances have made it possible to manipulate electromagnetic and acoustic wavefronts with sub-wavelength metasurface slabs, the design of elastodynamic counterparts remains challenging. We introduce a novel but simple design approach to control SV-waves in elastic solids. The proposed metasurface can be fabricated by cutting an array of aligned parallel cracks in a solid such that the materials between the cracks act as plate-like waveguides in the background medium. The plate array is capable of modulating the phase change of SV-wave while keeping the phase of P-wave unchanged. An analytical model for SV-wave incidence is established to calculate the transmission coefficient and the transmitted phase through the plate-like waveguide explicitly. A complete 2π range of phase delay is achieved by selecting different thicknesses for the plates. An elastic metasurface for splitting SV- and P-waves is designed and demonstrated using full wave finite element simulations. Two metasurfaces for focusing plane and cylindrical SV-waves are also presented.
ISSN:0021-8979
1089-7550
DOI:10.1063/1.5007731