Framework for developing a spatial walkability index (SWI) for the light-rail transit (LRT) stations in Kuala Lumpur city centre using analytical network process (ANP) and GIS

In support to the nation’s goal of developing a liveable city, Malaysian government aims to improve the mobility in Kuala Lumpur by providing good quality transit services across the city. However, the public starts to demand for more than just a connectivity between two points. They want their tran...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Naharudin, Nabilah, Ahamad, Mohd Sanusi S., Sadullah, Ahmad Farhan Mohd
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In support to the nation’s goal of developing a liveable city, Malaysian government aims to improve the mobility in Kuala Lumpur by providing good quality transit services across the city. However, the public starts to demand for more than just a connectivity between two points. They want their transit journey to be comfortable and pleasant from the very first mile. The key here is the first and last mile (FLM) of the transit service which defines their journey to access the station itself. The question is, does the existing transit services’ FLM satisfy public’s needs? Therefore, many studies had emerged in attempt to assess the pedestrian-friendliness. While most of them did base on the pedestrian’s perceptions, there were also studies that spatially measured the connectivity and accessibility to various landuses and point of interests. While both can be a good method, their integration could actually produce a better assessment. However, till date, only a few studies had attempted to do so. This paper proposes a framework to develop a Spatial Walkability Index (SWI) by integrating a multicriteria evaluation technique, Analytical Network Process (ANP) and network analysis on geographical information system (GIS) platform. First, ANP will aggregate the degree of importance for each walkability criteria based on the pedestrian’s perceptions. Then, the network analysis will use the weighted criteria as attributes to find the walkable routes within half mile radius from each station. The index will be calculated by rationing the total length of walkable routes in respect to the available footpath. The final outcome is a percentage of walkable FLM transit routes for each station which will be named as the SWI. It is expected that the developed framework can be applied in other cities across the globe. It can also be improvised to suit the demand and purpose there.
ISSN:0094-243X
1551-7616
DOI:10.1063/1.5005758