Engineered Gd-Co based multilayer stack to enhanced magneto-caloric effect and relative cooling power

Magnetic refrigeration based on the magneto-caloric effect is one of the best alternatives to compete with vapor-compression technology. The viability of a magnetic refrigeration system for magnetic cooling can be tested by exploiting the materials in various forms, ranging from bulk to nanostructur...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of applied physics 2018-02, Vol.123 (5)
Hauptverfasser: Tadout, M., Lambert, C.-H., El Hadri, M. S., Mounkachi, O., Benyoussef, A., Hamedoun, M., Benaissa, M., Mangin, S.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Magnetic refrigeration based on the magneto-caloric effect is one of the best alternatives to compete with vapor-compression technology. The viability of a magnetic refrigeration system for magnetic cooling can be tested by exploiting the materials in various forms, ranging from bulk to nanostructured materials. In order to achieve a wide refrigerating temperature range in magnetic refrigeration, we study in this paper a 100 nm-thick Gd-Co alloys-based multilayer stack. The stack is made of four individual Gd-Co alloy layers with different values of concentration and Curie temperature (TC). A magnetic entropy change associated with the second-order magnetic phase transition was determined from the magnetic isotherms. Moreover, the relative cooling power (RCP) of the studied Gd-Co-based multilayer is enhanced compared to the one of bulk Gd, and reaches a value of 200 J/kg. Such an enhancement of the RCP is not due to an enhanced maximum variation of entropy, but this is due to a much broader magnetic entropy peak. This study demonstrates the potential of nanostructured Gd-Co multilayer stack for magnetic cooling applications.
ISSN:0021-8979
1089-7550
DOI:10.1063/1.5004712