Stress-induced indirect to direct band gap transition in β-FeSi2 nanocrystals embedded in Si

Embedded in silicon β-FeSi2 nanocrystals (NCs) were grown on Si(111) by solid phase epitaxy of a thin iron film followed by Si molecular beam epitaxy. After solid phase epitaxy, a mixture of β-FeSi2 and ε-FeSi nanocrystals is formed on the surface, sometimes β and ε phases coexist inside one nanocry...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Shevlyagin, A. V., Goroshko, D. L., Chusovitin, E. A., Balagan, S. A., Dotsenko, S. A., Galkin, K. N., Galkin, N. G., Shamirzaev, T. S., Gutakovskii, A. K., Iinuma, M., Terai, Y.
Format: Tagungsbericht
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Embedded in silicon β-FeSi2 nanocrystals (NCs) were grown on Si(111) by solid phase epitaxy of a thin iron film followed by Si molecular beam epitaxy. After solid phase epitaxy, a mixture of β-FeSi2 and ε-FeSi nanocrystals is formed on the surface, sometimes β and ε phases coexist inside one nanocrystal. During initial stage of Si molecular beam epitaxy all ε-FeSi transforms into β-FeSi2. β-FeSi2 nanocrystals tend to move following Si growth front. By adjusting growth condition, we manage to prevent the nanocrystals from moving and to fabricate 7-layer n-Si(111)/β-FeSi2_NCs/p +-Si silicon heterostructure with embedded β-FeSi2 NCs. An epitaxial relationship and a stress induced in the nanocrystals by silicon matrix were found to be suitable for indirect to direct band gap transition in β-FeSi2. Of the heterostructure, a n-i-p avalanche photodetector and a light-emitting diode were formed. They have shown relatively good performance: ultrabroadband photoresponse from the visible (400 nm) to short-wavelength infrared (1800 nm) ranges owing to quantum-confined Stark effect in the nanocrystals and optical emission power of up to 25 µW at 9 A/cm2 with an external quantum efficiency of 0.009% at room temperature owing to a direct fundamental transition in stressed β-FeSi2 nanocrystals.
ISSN:0094-243X
1551-7616
DOI:10.1063/1.4998036