Performance of the BATMAN RF source with a large racetrack shaped driver
In the negative ion sources in neutral beam injection systems (NBI) of future fusion reactors the plasma is generated in up to eight cylindrical RF sources (“drivers”) from which it expands into the main volume. For these large sources, in particular those used in the future DEMO NBI, a high RF effi...
Gespeichert in:
Hauptverfasser: | , , , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In the negative ion sources in neutral beam injection systems (NBI) of future fusion reactors the plasma is generated in up to eight cylindrical RF sources (“drivers”) from which it expands into the main volume. For these large sources, in particular those used in the future DEMO NBI, a high RF efficiency and operational reliability is required. To achieve this it could be favorable to substitute each pair of drivers by one larger one. To investigate this option the cylindrical driver of the BATMAN source at IPP Garching has been replaced by a large source with a racetrack shaped base area and tested using the same extraction system. The main differences are a five times larger source volume and another position of the Cs oven which is mounted onto the driver`s back plate and not onto the expansion volume. The conditioning characteristics and the plasma symmetry in front of the plasma grid were very similar. The extracted H− current densities jex are comparable to that achieved with the small driver at the same power. Because no saturation of jex occurred at 0.6 Pa at high power and the source allows high power operation, a maximum value 45.1 mA/cm2 at 103 kW has been reached. Sputtered Cu from the walls of the expansion volume affected the performance at low pressure, particularly in deuterium. The experiments will be therefore continued with Mo coating of all inner walls. |
---|---|
ISSN: | 0094-243X 1551-7616 |
DOI: | 10.1063/1.4995726 |