Investigation of Cu2SnSe3 preparation by simultaneous electrodeposition as precursor of Cu2ZnSnSe4 thin film solar cell

Chalcogenide material of multinary metals are of interest in relation as optoelectronic devices such as laser and solar cell. Cu2SnSe3, ternary chalcogenide, is semiconductor with low bandgap. Beside that Cu2SnSe3 is important precursor for the growth of a promising Cu2ZnSnSe4 thin film solar cell s...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Gunawan, Haris, Abdul, Widodo, Didik Setiyo, Septina, Wilman, Ikeda, Shigeru
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Chalcogenide material of multinary metals are of interest in relation as optoelectronic devices such as laser and solar cell. Cu2SnSe3, ternary chalcogenide, is semiconductor with low bandgap. Beside that Cu2SnSe3 is important precursor for the growth of a promising Cu2ZnSnSe4 thin film solar cell since it contains elements that is abundance in the earth crust. The aim of this work is to synthesis Cu2SnSe3 thin film compound by using simultaneous electrodeposition. The product then was characterized using EDX, XRD, RAMAN and SEM. The result showed that Cu2SnSe3 can be prepared by electrodeposition at a potential of −0.6V vs. Ag/AgCl for 20 min. Annnealing can cause the increase of Cu2SnSe3 sample crystalinity. Annealing in argon atmosphere at 500 °C affected selenium evaporation in the film, therefore it improved Cu/Sn ratio. Further, annealing in selenium atmosphere at temperature of 500 °C can increase the intensity of Cu2SnSe3 crystal much better and also improve the Se/(Cu+Sn) ratio close to ideal value. Spectra of XRD and raman also proved the presence of Cu2SnSe3 in the prepared thin film.
ISSN:0094-243X
1551-7616
DOI:10.1063/1.4995091