A high output voltage flexible piezoelectric nanogenerator using porous lead-free KNbO3 nanofibers
Self-powered nanodevices for applications such as sensor networks and IoTs are among the emerging technologies in electronics. Piezoelectric nanogenerators (P-NGs) that harvest energy from mechanical stimuli are highly valuable in the development of self-sufficient nanosystems. Despite progress in t...
Gespeichert in:
Veröffentlicht in: | Applied physics letters 2017-07, Vol.111 (1) |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Self-powered nanodevices for applications such as sensor networks and IoTs are among the emerging technologies in electronics. Piezoelectric nanogenerators (P-NGs) that harvest energy from mechanical stimuli are highly valuable in the development of self-sufficient nanosystems. Despite progress in the development of P-NGs, the use of porous perovskite ferroelectric nanofibers was barely considered or discussed. In this letter, a flexible high output nanogenerator is fabricated using a nanocomposite comprising porous potassium niobate (KNbO3) nanofibers and polydimethylsiloxane. When a compressive force was applied to as-fabricated P-NG, a peak-to-peak output voltage of ∼16 V and a maximum closed circuit current of 230 nA were obtained, which are high enough to realize self-powered nanodevices. In addition, due to their porosity and non-toxic nature, KNbO3 nanofibers may be used as an alternative to the dominant lead-based piezoelectric devices. Besides the high output performance of the device, multifunctional capability, flexible design, and cost-effective construction of the as-fabricated P-NG can be crucial to large-scale deployment of autonomous devices. |
---|---|
ISSN: | 0003-6951 1077-3118 |
DOI: | 10.1063/1.4992786 |