Transition operators

In this paper, we give a generic algorithm of the transition operators between Hermitian Young projection operators corresponding to equivalent irreducible representations of ( N ) , using the compact expressions of Hermitian Young projection operators derived in the work of Alcock-Zeilinger and Wei...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of mathematical physics 2017-05, Vol.58 (5)
Hauptverfasser: Alcock-Zeilinger, J., Weigert, H.
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, we give a generic algorithm of the transition operators between Hermitian Young projection operators corresponding to equivalent irreducible representations of ( N ) , using the compact expressions of Hermitian Young projection operators derived in the work of Alcock-Zeilinger and Weigert [eprint arXiv:1610.10088 [math-ph]]. We show that the Hermitian Young projection operators together with their transition operators constitute a fully orthogonal basis for the algebra of invariants of V ⊗ m that exhibits a systematically simplified multiplication table. We discuss the full algebra of invariants over V ⊗ 3 and V ⊗ 4 as explicit examples. In our presentation, we make use of various standard concepts, such as Young projection operators, Clebsch-Gordan operators, and invariants (in birdtrack notation). We tie these perspectives together and use them to shed light on each other.
ISSN:0022-2488
1089-7658
DOI:10.1063/1.4983479