Online transfer learning with extreme learning machine

In this paper, we propose a new transfer learning algorithm for online training. The proposed algorithm, which is called Online Transfer Extreme Learning Machine (OTELM), is based on Online Sequential Extreme Learning Machine (OSELM) while it introduces Semi-Supervised Extreme Learning Machine (SSEL...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Yin, Haibo, Yang, Yun-an
Format: Tagungsbericht
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, we propose a new transfer learning algorithm for online training. The proposed algorithm, which is called Online Transfer Extreme Learning Machine (OTELM), is based on Online Sequential Extreme Learning Machine (OSELM) while it introduces Semi-Supervised Extreme Learning Machine (SSELM) to transfer knowledge from the source to the target domain. With the manifold regularization, SSELM picks out instances from the source domain that are less relevant to those in the target domain to initialize the online training, so as to improve the classification performance. Experimental results demonstrate that the proposed OTELM can effectively use instances in the source domain to enhance the learning performance.
ISSN:0094-243X
1551-7616
DOI:10.1063/1.4982564