Model development of monolithic tandem silicon-perovskite solar cell by SCAPS simulation
Organic-inorganic lead halide perovskites have significant role in the photovoltaic (PV) technology due to its high efficiency, lightweight and cost effectiveness especially methyl ammonium lead (II) iodide (MALI). The MALI can act as absorber layer which has a band gap of 1.5 eV which is compatible...
Gespeichert in:
Hauptverfasser: | , , , , , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Organic-inorganic lead halide perovskites have significant role in the photovoltaic (PV) technology due to its high efficiency, lightweight and cost effectiveness especially methyl ammonium lead (II) iodide (MALI). The MALI can act as absorber layer which has a band gap of 1.5 eV which is compatible to be paired with silicon (Si) solar cell with energy gap of 1.124 eV as a tandem solar cell. This tandem approach is an refined solution to improve the efficiency of Si solar cell that has been stuck around 25 % for 15 years. This study focuses on the development of the device configuration model for Si-perovskite tandem solar cell by using SCAPS simulation. The thickness and dopant concentration of perovskite layer have affected the solar cell parameters performance. The efficiency result obtained from SCAPS simulation is 27.29 % for Si-perovskite tandem solar cell with an open circuit voltage of 0.8178 V, short circuit current 43.55 mA/cm2 and fill factor 76.61 %. |
---|---|
ISSN: | 0094-243X 1551-7616 |
DOI: | 10.1063/1.4982178 |