Proton implantation for electrical insulation of the InGaAs/InAlAs superlattice material used in 8–15 μm-emitting quantum cascade lasers

We demonstrate the conversion of lattice-matched InGaAs/InAlAs quantum-cascade-laser (QCL) active-region material into an effective current-blocking layer via proton implantation. A 35-period active region of an 8.4 μm-emitting QCL structure was implanted with a dose of 5 × 1014 cm−2 protons at 450 ...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied physics letters 2017-02, Vol.110 (8)
Hauptverfasser: Kirch, J. D., Kim, H., Boyle, C., Chang, C.-C., Mawst, L. J., Lindberg, D., Earles, T., Botez, D., Helm, M., von Borany, J., Akhmadaliev, S., Böttger, R., Reyner, C.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We demonstrate the conversion of lattice-matched InGaAs/InAlAs quantum-cascade-laser (QCL) active-region material into an effective current-blocking layer via proton implantation. A 35-period active region of an 8.4 μm-emitting QCL structure was implanted with a dose of 5 × 1014 cm−2 protons at 450 keV to produce a vacancy concentration of ∼1019 cm−3. At room temperature, the sheet resistance, extracted from the Hall measurements, increases by a factor of ∼240 with respect to that of an unimplanted material. Over the 160–320 K temperature range, the activation energy of the implanted-material Hall sheet-carrier density is 270 meV. The significant increase in room-temperature sheet resistance indicates that upon implantation deep carrier traps have been formed in the InAlAs layers of the superlattice. Fabricated mesas show effective current blocking, at voltages ≥10 V, up to at least 350 K. Thus, the implanted InGaAs/InAlAs superlattices are highly resistive to at least 350 K heat sink temperature. Such implanted material should prove useful for effective current confinement in 8–15 μm-emitting InP-based single-emitter QCL structures as well as in resonant leaky-wave coupled phase-locked arrays of QCLs.
ISSN:0003-6951
1077-3118
DOI:10.1063/1.4977067