Applications and results of X-ray spectroscopy in implosion experiments on the National Ignition Facility

Current inertial confinement fusion experiments on the National Ignition Facility (NIF) [G. H. Miller, E. I. Moses, and C. R. Wuest, Opt. Eng. 43, 2841 (2004)] are attempting to demonstrate thermonuclear ignition using x-ray drive by imploding spherical targets containing hydrogen-isotope fuel in th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Epstein, R., Regan, S. P., Hammel, B. A., Suter, L. J., Scott, H. A., Barrios, M. A., Bradley, D. K., Callahan, D. A., Cerjan, C., Collins, G. W., Dixit, S. N., Döppner, T., Edwards, M. J., Farley, D. R., Fournier, K. B., Glenn, S., Glenzer, S. H., Golovkin, I. E., Hamza, A., Hicks, D. G., Izumi, N., Jones, O. S., Key, M. H., Kilkenny, J. D., Kline, J. L., Kyrala, G. A., Landen, O. L., Ma, T., MacFarlane, J. J., Mackinnon, A. J., Mancini, R. C., McCrory, R. L., Meyerhofer, D. D., Meezan, N. B., Nikroo, A., Park, H.-S., Patel, P. K., Ralph, J. E., Remington, B. A., Sangster, T. C., Smalyuk, V. A., Springer, P. T., Town, R. P. J., Tucker, J. L.
Format: Tagungsbericht
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Current inertial confinement fusion experiments on the National Ignition Facility (NIF) [G. H. Miller, E. I. Moses, and C. R. Wuest, Opt. Eng. 43, 2841 (2004)] are attempting to demonstrate thermonuclear ignition using x-ray drive by imploding spherical targets containing hydrogen-isotope fuel in the form of a thin cryogenic layer surrounding a central volume of fuel vapor [J. Lindl, Phys. Plasmas 2, 3933 (1995)]. The fuel is contained within a plastic ablator layer with small concentrations of one or more mid-Z elements, e.g., Ge or Cu. The capsule implodes, driven by intense x-ray emission from the inner surface of a hohlraum enclosure irradiated by the NIF laser, and fusion reactions occur in the central hot spot near the time of peak compression. Ignition will occur if the hot spot within the compressed fuel layer attains a high-enough areal density to retain enough of the reaction product energy to reach nuclear reaction temperatures within the inertial hydrodynamic disassembly time of the fuel mass [J. Lindl, Phys. Plasmas 2, 3933 (1995)]. The primary purpose of the ablator dopants is to shield the ablator surface adjacent to the DT ice from heating by the hohlraum x-ray drive [S. W. Haan et al., Phys. Plasmas 18, 051001 (2011)]. Simulations predicted that these dopants would produce characteristic K-shell emission if ablator material mixed into the hot spot [B. A. Hammel et al., High Energy Density Phys. 6, 171 (2010)]. In NIF ignition experiments, emission and absorption features from these dopants appear in x-ray spectra measured with the hot-spot x-ray spectrometer in Supersnout II [S. P. Regan et al., “Hot-Spot X-Ray Spectrometer for the National Ignition Facility,” to be submitted to Review of Scientific Instruments]. These include K-shell emission lines from the hot spot (driven primarily by inner-shell collisional ionization and dielectronic recombination) and photoionization edges, fluorescence, and absorption lines caused by the absorption of the hot-spot continuum in the shell. These features provide diagnostics of the central hot spot and the compressed shell, plus a measure of the shell mass that has mixed into the hot spot [S. P. Regan et al., Phys. Plasmas 19, 056307 (2012)] and evidence locating the origin of the mixed shell mass in the imploding ablator [S. P. Regan et al., Phys. Rev. Lett. 111, 045001 (2013)]. Spectra are analyzed and interpreted using detailed atomic models (including radiation-transport effects) to determine the c
ISSN:0094-243X
1551-7616
DOI:10.1063/1.4975747