Reaping the benefits of ferroelectricity in selectively precipitated lithium niobate microcrystals in silica matrix for photocatalysis

Microcrystals of LiNbO3 (size ∼200 nm) can be selectively precipitated in a glass matrix which can assist in the photocatalytic activity through ferroelectricity. Glass with the composition 30SiO2-35Li2CO3-35Nb2O5 was utilized for the process. A remarkably high Estriol (E3) degradation rate of 232.5...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied physics letters 2016-11, Vol.109 (22)
Hauptverfasser: Rastogi, Monisha, Chauhan, Aditya, Kushwaha, Himmat Singh, Kumar, Ramachandran Vasant, Vaish, Rahul
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Microcrystals of LiNbO3 (size ∼200 nm) can be selectively precipitated in a glass matrix which can assist in the photocatalytic activity through ferroelectricity. Glass with the composition 30SiO2-35Li2CO3-35Nb2O5 was utilized for the process. A remarkably high Estriol (E3) degradation rate of 232.54 min−1 m−2 was obtained. The degradation was monitored using fluorescence spectroscopy with a detection limit in nanomolar (nM) range. From the fitting of fluorescence intensity versus time, it was observed that degradation of estriol follows a pseudo first-order reaction kinetics. The results indicate that LiNbO3 based glass-ceramics have a great potential to be employed as a well embedded photocatalyst.
ISSN:0003-6951
1077-3118
DOI:10.1063/1.4970774