Reaping the benefits of ferroelectricity in selectively precipitated lithium niobate microcrystals in silica matrix for photocatalysis
Microcrystals of LiNbO3 (size ∼200 nm) can be selectively precipitated in a glass matrix which can assist in the photocatalytic activity through ferroelectricity. Glass with the composition 30SiO2-35Li2CO3-35Nb2O5 was utilized for the process. A remarkably high Estriol (E3) degradation rate of 232.5...
Gespeichert in:
Veröffentlicht in: | Applied physics letters 2016-11, Vol.109 (22) |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Microcrystals of LiNbO3 (size ∼200 nm) can be selectively precipitated in a glass matrix which can assist in the photocatalytic activity through ferroelectricity. Glass with the composition 30SiO2-35Li2CO3-35Nb2O5 was utilized for the process. A remarkably high Estriol (E3) degradation rate of 232.54 min−1 m−2 was obtained. The degradation was monitored using fluorescence spectroscopy with a detection limit in nanomolar (nM) range. From the fitting of fluorescence intensity versus time, it was observed that degradation of estriol follows a pseudo first-order reaction kinetics. The results indicate that LiNbO3 based glass-ceramics have a great potential to be employed as a well embedded photocatalyst. |
---|---|
ISSN: | 0003-6951 1077-3118 |
DOI: | 10.1063/1.4970774 |