Clustering-based statistical global optimization

A global optimization algorithm based on statistical modeling of the objective function and a rectangular decomposition of the feasible region, where an analogue to the probability of improvement is used as a selection criterion, is extended to speed up convergence. Measurement clusters are determin...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Gimbutienė, Gražina, Žilinskas, Antanas
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A global optimization algorithm based on statistical modeling of the objective function and a rectangular decomposition of the feasible region, where an analogue to the probability of improvement is used as a selection criterion, is extended to speed up convergence. Measurement clusters are determined using a clustering algorithm, a local descent is performed to efficiently find the local minimizers and the explored regions are masked out from further processing. The performance improvement is demonstrated by numerical experiments.
ISSN:0094-243X
1551-7616
DOI:10.1063/1.4965342