Assessment of the beam path deflection for a vertically installed microwave interferometer in SUNIST

Microwave interferometry has been widely employed to provide reliable line averaged electron density measurement on plasma devices. For a vertically installed interferometer on a tokamak, the refraction problem, which distorts the beam path and aggravates power loss at the receiving antenna, may bec...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Review of scientific instruments 2016-08, Vol.87 (8), p.083501-083501
Hauptverfasser: Zhong, H., Ling, B. L., Tan, Y., Gao, Z.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Microwave interferometry has been widely employed to provide reliable line averaged electron density measurement on plasma devices. For a vertically installed interferometer on a tokamak, the refraction problem, which distorts the beam path and aggravates power loss at the receiving antenna, may become significant if taking the cross section shape into account. Increasing the frequency of the probing microwave can alleviate the distortion, but at the expense of losing the density resolution. To seek for an optimized frequency, previous calculations are mainly based on the cylindrical column geometry which grossly underestimates the deflection of the beam path induced by the plasma shape, and empirical suggestions indicating n e0/nc = 1/2 ∼ 1/3 may not always be the appropriate option. Here a single ray tracing method is applied to estimate the final horizontal deviation at the receiving antenna, which is supposed to represent the level of power loss. The calculation is carried out under the real tokamak geometry in Sino-UNIted Spherical Tokamak (SUNIST) with the cross section parameters obtained from the equilibrium reconstruction, and the result indicates that for a target density of 1.2 × 1019 m−3, a frequency of at least 100 GHz is desirable to reduce the power loss to an acceptable level. This would be helpful for the design of a vertically installed interferometer on SUNIST.
ISSN:0034-6748
1089-7623
DOI:10.1063/1.4959979