The magnetism and spin-dependent electronic transport properties of boron nitride atomic chains

Very recently, boron nitride atomic chains were successively prepared and observed in experiments [O. Cretu et al., ACS Nano 8, 11950 (2015)]. Herein, using a first-principles technique, we study the magnetism and spin-dependent electronic transport properties of three types of BN atomic chains whos...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of chemical physics 2016-07, Vol.145 (4), p.044301-044301
Hauptverfasser: An, Yipeng, Zhang, Mengjun, Wu, Dapeng, Fu, Zhaoming, Wang, Tianxing, Jiao, Zhaoyong, Wang, Kun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Very recently, boron nitride atomic chains were successively prepared and observed in experiments [O. Cretu et al., ACS Nano 8, 11950 (2015)]. Herein, using a first-principles technique, we study the magnetism and spin-dependent electronic transport properties of three types of BN atomic chains whose magnetic moment is 1 μ B for BnNn−1, 2 μ B for BnNn, and 3 μ B for BnNn+1 type atomic chains, respectively. The spin-dependent electronic transport results demonstrate that the short BnNn+1 chain presents an obvious spin-filtering effect with high spin polarization ratio (>90%) under low bias voltages. Yet, this spin-filtering effect does not occur for long BnNn+1 chains under high bias voltages and other types of BN atomic chains (BnNn−1 and BnNn). The proposed short BnNn+1 chain is predicted to be an effective low-bias spin filters. Moreover, the length-conductance relationships of these BN atomic chains were also studied.
ISSN:0021-9606
1089-7690
DOI:10.1063/1.4958626