Resin flow and void formation in an autoclave cure cycle

A finite element (FE) model able to evaluate both the evolution of resin flow, degree of reaction and void formation during autoclave cure cycles was developed. The model was implemented using a commercial epoxy matrix widely used in aeronautic field. The FE model also included a kinetic and rheolog...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Lionetto, Francesca, Lucia, Massimo, Dell’Anna, Riccardo, Maffezzoli, Alfonso
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A finite element (FE) model able to evaluate both the evolution of resin flow, degree of reaction and void formation during autoclave cure cycles was developed. The model was implemented using a commercial epoxy matrix widely used in aeronautic field. The FE model also included a kinetic and rheological model whose input parameters were experimentally determined by Differential Scanning Calorimetry and rheological analysis. The FE model was able to predict the evolution of degree of reaction with very good agreement with the experimental data. Moreover, the predicted resin losses were lower than 3% of the overall composite resin content.
ISSN:0094-243X
1551-7616
DOI:10.1063/1.4949692