Storey building early monitoring based on rapid seismic response analysis
Within the last decade, advances in the acquisition, processing and transmission of data from seismic monitoring has contributed to the growth in the number structures instrumented with such systems. An equally important factor for such growth can be attributed to the demands by stakeholders to find...
Gespeichert in:
Hauptverfasser: | , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Within the last decade, advances in the acquisition, processing and transmission of data from seismic monitoring has contributed to the growth in the number structures instrumented with such systems. An equally important factor for such growth can be attributed to the demands by stakeholders to find rapid answers to important questions related to the functionality or state of “health” of structures during and immediately of a seismic events. Consequently, this study aims to monitor the storey building based on seismic response i. e. earthquake and tremor analysis at short time lapse using accelerographs data. This study used one of storey building (X) in Jakarta city that suffered the effects of Kebumen earthquake January 25th 2014, Pandeglang earthquake July 9th 2014, and Lebak earthquake November 8th 2014. Tremors used in this study are tremors after the three following earthquakes. Data processing used to determine peak ground acceleration (PGA), peak ground velocity (PGV), peak ground displacement (PGD), spectral acceleration (SA), spectral velocity (SV), spectral displacement (SD), A/V ratio, acceleration amplification and effective duration (te). Then determine the natural frequency (f0) and peak of H/V ratio using H/V ratio method.The earthquakes data processing result shows the value of peak ground motion, spectrum response, A/V ratio and acceleration amplification increases with height, while the value of the effective duration give a different viewpoint of building dynamic because duration of Kebumen earthquake shows the highest energy in the highest floor but Pandeglang and Lebak earthquake in the lowest floor. Then, tremors data processing result one month after each earthquakes shows the natural frequency of building in constant value. Increasing of peak ground motion, spectrum response, A/V ratio, acceleration amplification, then decrease of effective duration following the increase of building floors shows that the building construction supports the increasing of shaking and strongly influenced by local site effect. The constant value of building natural frequency shows the building still in good performance. This monitoring is very important and useful for help public safety by recommend to rehabilitate the functionality of structures. |
---|---|
ISSN: | 0094-243X 1551-7616 |
DOI: | 10.1063/1.4947388 |